首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111267篇
  免费   3377篇
  国内免费   1863篇
电工技术   2659篇
技术理论   7篇
综合类   4057篇
化学工业   16234篇
金属工艺   6503篇
机械仪表   4786篇
建筑科学   4287篇
矿业工程   1348篇
能源动力   1820篇
轻工业   5263篇
水利工程   1739篇
石油天然气   2220篇
武器工业   228篇
无线电   12332篇
一般工业技术   19494篇
冶金工业   3960篇
原子能技术   583篇
自动化技术   28987篇
  2024年   144篇
  2023年   526篇
  2022年   870篇
  2021年   1213篇
  2020年   968篇
  2019年   767篇
  2018年   15122篇
  2017年   14228篇
  2016年   10639篇
  2015年   1688篇
  2014年   1586篇
  2013年   1802篇
  2012年   4891篇
  2011年   11217篇
  2010年   9951篇
  2009年   7165篇
  2008年   8270篇
  2007年   9259篇
  2006年   1610篇
  2005年   2567篇
  2004年   2054篇
  2003年   2038篇
  2002年   1385篇
  2001年   809篇
  2000年   827篇
  1999年   843篇
  1998年   646篇
  1997年   538篇
  1996年   507篇
  1995年   432篇
  1994年   371篇
  1993年   237篇
  1992年   195篇
  1991年   158篇
  1990年   87篇
  1989年   107篇
  1988年   72篇
  1987年   35篇
  1968年   43篇
  1967年   33篇
  1966年   42篇
  1965年   44篇
  1963年   28篇
  1960年   30篇
  1959年   36篇
  1958年   37篇
  1957年   36篇
  1956年   34篇
  1955年   63篇
  1954年   68篇
排序方式: 共有10000条查询结果,搜索用时 11 毫秒
991.
This paper is concerned with the mean-square exponential stability problem for a class of impulsive stochastic systems with delayed impulses. The delays exhibit in both continuous subsystem and discrete subsystem. By constructing piecewise time-varying Lyapunov functions and Razumikhin technique, sufficient conditions are derived which guarantee the mean-square exponential stability for impulsive stochastic delay system. It is shown that the obtained stability conditions depend both on the lower bound and the upper bound of impulsive intervals, and the stability of system is robust with regard to sufficiently small impulse input delays. Finally, two examples are proposed to verify the efficiency of the proposed results.  相似文献   
992.
In order to achieve better tracking accuracy effectively, a new smooth and near time-optimal trajectory planning approach is proposed for a parallel manipulator subject to kinematic and dynamic constraints. The complete dynamic model is constructed with consideration of all joint frictions. The presented planning problem can be solved efficiently by formulating a new limitation curve for dynamic constraints and a reduced form for jerk constraints. The motion trajectory is planned with quartic and quintic polynomial splines in Cartesian space and septuple polynomial splines in joint space. Experimental results show that smaller tracking error can be obtained. The developed method can be applied to any robots with analytical inverse kinematic and dynamic solutions.  相似文献   
993.
Geometric quantum computation is the idea that geometric phases can be used to implement quantum gates, i.e., the basic elements of the Boolean network that forms a quantum computer. Although originally thought to be limited to adiabatic evolution, controlled by slowly changing parameters, this form of quantum computation can as well be realized at high speed by using nonadiabatic schemes. Recent advances in quantum gate technology have allowed for experimental demonstrations of different types of geometric gates in adiabatic and nonadiabatic evolution. Here, we address some conceptual issues that arise in the realizations of geometric gates. We examine the appearance of dynamical phases in quantum evolution and point out that not all dynamical phases need to be compensated for in geometric quantum computation. We delineate the relation between Abelian and non-Abelian geometric gates and find an explicit physical example where the two types of gates coincide. We identify differences and similarities between adiabatic and nonadiabatic realizations of quantum computation based on non-Abelian geometric phases.  相似文献   
994.
We present an analytical lower bound of multipartite concurrence based on the generalized Bloch representations of density matrices. It is shown that the lower bound can be used as an effective entanglement witness of genuine multipartite entanglement. Tight lower and upper bounds for multipartite tangles are also derived. Since the lower bounds depend on just part of the correlation tensors, the result is experimentally feasible.  相似文献   
995.
Principal component analysis is a multivariate statistical method frequently used in science and engineering to reduce the dimension of a problem or extract the most significant features from a dataset. In this paper, using a similar notion to the quantum counting, we show how to apply the amplitude amplification together with the phase estimation algorithm to an operator in order to procure the eigenvectors of the operator associated to the eigenvalues defined in the range \(\left[ a, b\right] \), where a and b are real and \(0 \le a \le b \le 1\). This makes possible to obtain a combination of the eigenvectors associated with the largest eigenvalues and so can be used to do principal component analysis on quantum computers.  相似文献   
996.
The original measurement device-independent quantum key distribution is reviewed, and a modified protocol using heralded pair coherent state (HPCS) is proposed to overcome the quantum bit error rate associated with the dark count rate of the detectors in long-distance quantum key distribution. Our simulation indicates that the secure transmission distance can be improved evidently with HPCS owing to the lower probability of vacuum events when compared with weak coherent source scenario, while the secure key rate can be increased with HPCS due to the higher probability of single-photon events when compared with heralded single-photon source scenario. Furthermore, we apply the finite key analysis to the decoy state MDI-QKD with HPCS and obtain a practical key rate.  相似文献   
997.
This paper focuses on a bi-objective experimental evaluation of online scheduling in the Infrastructure as a Service model of Cloud computing regarding income and power consumption objectives. In this model, customers have the choice between different service levels. Each service level is associated with a price per unit of job execution time, and a slack factor that determines the maximal time span to deliver the requested amount of computing resources. The system, via the scheduling algorithms, is responsible to guarantee the corresponding quality of service for all accepted jobs. Since we do not consider any optimistic scheduling approach, a job cannot be accepted if its service guarantee will not be observed assuming that all accepted jobs receive the requested resources. In this article, we analyze several scheduling algorithms with different cloud configurations and workloads, considering the maximization of the provider income and minimization of the total power consumption of a schedule. We distinguish algorithms depending on the type and amount of information they require: knowledge free, energy-aware, and speed-aware. First, to provide effective guidance in choosing a good strategy, we present a joint analysis of two conflicting goals based on the degradation in performance. The study addresses the behavior of each strategy under each metric. We assess the performance of different scheduling algorithms by determining a set of non-dominated solutions that approximate the Pareto optimal set. We use a set coverage metric to compare the scheduling algorithms in terms of Pareto dominance. We claim that a rather simple scheduling approach can provide the best energy and income trade-offs. This scheduling algorithm performs well in different scenarios with a variety of workloads and cloud configurations.  相似文献   
998.
This paper presents an abstract specification of an enforcement mechanism of usage control for Grids, and verifies formally that such mechanism enforces UCON policies. Our technique is based on KAOS, a goal-oriented requirements engineering methodology with a formal LTL-based language and semantics. KAOS is used in a bottom-up form. We abstract the specification of the enforcement mechanism from current implementations of usage control for Grids. The result of this process is agent and operation models that describe the main components and operations of the enforcement mechanism. KAOS is used in top-down form by applying goal-refinement in order to refine UCON policies. The result of this process is a goal-refinement tree, which shows how a goal (policy) can be decomposed into sub-goals. Verification that a policy can be enforced is then equivalent to prove that a goal can be implemented by the enforcement mechanism represented by the agent and operation models.  相似文献   
999.
Monitoring of cloud computing infrastructures is an imperative necessity for cloud providers and administrators to analyze, optimize and discover what is happening in their own infrastructures. Current monitoring solutions do not fit well for this purpose mainly due to the incredible set of new requirements imposed by the particular requirements associated to cloud infrastructures. This paper describes in detail the main reasons why current monitoring solutions do not work well. Also, it provides an innovative monitoring architecture that enables the monitoring of the physical and virtual machines available within a cloud infrastructure in a non-invasive and transparent way making it suitable not only for private cloud computing but also for public cloud computing infrastructures. This architecture has been validated by means of a prototype integrating an existing enterprise-class monitoring solution, Nagios, with the control and data planes of OpenStack, a well-known stack for cloud infrastructures. As a result, our new monitoring architecture is able to extend the exiting Nagios functionalities to fit in the monitoring of cloud infrastructures. The proposed architecture has been designed, implemented and released as open source to the scientific community. The proposal has also been empirically validated in a production-level cloud computing infrastructure running a test bed with up to 128 VMs where overhead and responsiveness has been carefully analyzed.  相似文献   
1000.
Let \(R=\mathbb {F}_{2^{m}}+u\mathbb {F}_{2^{m}}+\cdots +u^{k}\mathbb {F}_{2^{m}}\), where \(\mathbb {F}_{2^{m}}\) is the finite field with \(2^{m}\) elements, m is a positive integer, and u is an indeterminate with \(u^{k+1}=0.\) In this paper, we propose the constructions of two new families of quantum codes obtained from dual-containing cyclic codes of odd length over R. A new Gray map over R is defined, and a sufficient and necessary condition for the existence of dual-containing cyclic codes over R is given. A new family of \(2^{m}\)-ary quantum codes is obtained via the Gray map and the Calderbank–Shor–Steane construction from dual-containing cyclic codes over R. In particular, a new family of binary quantum codes is obtained via the Gray map, the trace map and the Calderbank–Shor–Steane construction from dual-containing cyclic codes over R.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号