首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4258篇
  免费   177篇
  国内免费   7篇
电工技术   79篇
综合类   32篇
化学工业   1380篇
金属工艺   106篇
机械仪表   70篇
建筑科学   315篇
矿业工程   22篇
能源动力   108篇
轻工业   369篇
水利工程   10篇
石油天然气   2篇
无线电   240篇
一般工业技术   774篇
冶金工业   299篇
原子能技术   22篇
自动化技术   614篇
  2023年   40篇
  2022年   57篇
  2021年   81篇
  2020年   51篇
  2019年   79篇
  2018年   96篇
  2017年   80篇
  2016年   119篇
  2015年   122篇
  2014年   155篇
  2013年   196篇
  2012年   213篇
  2011年   273篇
  2010年   177篇
  2009年   199篇
  2008年   199篇
  2007年   213篇
  2006年   162篇
  2005年   144篇
  2004年   118篇
  2003年   118篇
  2002年   103篇
  2001年   71篇
  2000年   67篇
  1999年   70篇
  1998年   109篇
  1997年   70篇
  1996年   56篇
  1995年   56篇
  1994年   56篇
  1993年   55篇
  1992年   49篇
  1991年   60篇
  1990年   42篇
  1989年   27篇
  1988年   32篇
  1987年   39篇
  1986年   33篇
  1985年   54篇
  1984年   45篇
  1983年   43篇
  1982年   30篇
  1981年   40篇
  1980年   39篇
  1979年   32篇
  1978年   35篇
  1977年   28篇
  1976年   25篇
  1975年   33篇
  1973年   21篇
排序方式: 共有4442条查询结果,搜索用时 0 毫秒
831.
832.
833.
Styrene is formed by the thermal decarboxylation of cinnamic acid during wort boiling or by enzymatic decarboxylation during fermentation. The enzymatic reaction processes simultaneously to the decarboxylation of ferulic‐ and p‐cumaric acid to clove‐like 4‐vinylguaiacol and phenolic 4‐vinylphenol by the same PAD1 and FDC1 decarboxylase enzymes. However, the formation of styrene occurs much faster within the first hours of fermentation. In addition, the conversion of cinnamic acid starts immediately after pitching without an adaption of yeast on the new medium. Only after 120 min does the level of transposition decrease. Moreover, high cinnamic acid content in pitching wort, in combination with an open fermentation management, causes faster and higher styrene formation during this period. In contrast to the formation of 4‐vinylguaiacol, a correlation between pitching rate and styrene formation during open fermentation could be shown. The resulting time interval between styrene and 4‐vinylguaiacol formation provides scope for minimization strategies for styrene, while maintaining the typical wheat beer flavours. Copyright © 2012 The Institute of Brewing & Distilling  相似文献   
834.
Styrene is formed by the thermal decarboxylation of cinnamic acid during wort boiling or by enzymatic decarboxylation during fermentation. The enzymatic reactions proceed in parallel to the decarboxylation of ferulic- and p-cumaric acid to 4-vinylguaiacol and 4-vinylphenol by the same decarboxylase enzyme. However, the formation of styrene occurs much faster and all available cinnamic acid in wort was converted completely within a few hours. Moreover, the comparison of various manufacturing parameters shows that a higher fermentation temperature of 25 °C compared to 16 °C and an open fermentation management lead to a rapid decrease of styrene. This allows minimising the content of styrene in beer while maintaining the typical wheat beer flavours.  相似文献   
835.
In food, the mycotoxin deoxynivalenol (DON) often occurs in conjunction with its 3-β-d-glucopyranoside (D3G). The transformation of DON to D3G through glucosylation is catalysed by plant enzymes, however, the exact circumstances are not well understood. In order to investigate the role of enzymatic glucosylation in germinating grains, DON treated kernels were steeped and germinated under laboratory conditions. Furthermore, the effect of malting on the DON content of the contaminated barley was investigated. In all cases, DON and its derivatives were quantified by HPLC-MS/MS before, during and after the experiments. Amongst the six tested cereals; wheat, rye, barley, spelt, and millet transformed DON to D3G during germination whilst the oats were inactive. For wheat, barley, and spelt the initial DON content was reduced by 50%, with the loss being almost entirely accounted for by D3G formation. As D3G might be cleaved during digestion, the elevated D3G concentration may obscure the toxicologically relevant DON content in processed food and beer. The germination process has a major influence on the “masking” of DON, leading to high quantities of D3G that may be missed in common mycotoxin analyses.  相似文献   
836.
A novel in-package ozonation device was evaluated for its efficacy in inactivating three microorganisms (viz., Listeria innocua, attenuated Salmonella Typhimurium, and Escherichia coli O157:H7) on tomatoes and for its effect on fruit quality. The device produced ozone inside sealed film bags, reaching a concentration of 1,000 ppm within 1 min of activation. The three bacterial cultures were inoculated onto either the smooth surface or the stem scar areas of the tomatoes, which were then sealed in plastic film bags and subjected to in-package ozonation. L. innocua on tomatoes was reduced to nondetectable levels within 40 s of treatment on the tomato surface, with inactivation of ca. 4 log CFU per fruit on the stem scar area. An increase in treatment time did not result in a proportional increase in bacterial reduction. For E. coli O157:H7 and Salmonella, there was little difference (<1 log) in the effectiveness of the system when comparing surface and scar-inoculated bacteria. Both bacteria were typically reduced by 2 to 3 log CFU per fruit after 2- to 3-min treatments. No negative effects on fruit color or texture were observed during a 22-day posttreatment storage study of ozone-treated tomatoes. These results suggest that the three bacteria responded differently to ozonation and that in-package ozonation may provide an alternative to chemical sanitizers commonly used by the industry.  相似文献   
837.
Lager beer brewing relies on strains collectively known as Saccharomyces carlsbergensis, which are hybrids between S. cerevisiae and S. eubayanus‐like strains. Lager yeasts are particularly adapted to low‐temperature fermentations. Selection of new yeast strains for improved traits or fermentation performance is laborious, due to the allotetraploid nature of lager yeasts. Initially, we have generated new F1 hybrids by classical genetics, using spore clones of lager yeast and S. cerevisiae and complementation of auxotrophies of the single strains upon mating. These hybrids were improved on several parameters, including growth at elevated temperature and resistance against high osmolarity or high ethanol concentrations. Due to the uncertainty of chromosomal make‐up of lager yeast spore clones, we introduced molecular markers to analyse mating‐type composition by PCR. Based on these results, new hybrids between a lager and an ale yeast strain were isolated by micromanipulation. These hybrids were not subject to genetic modification. We generated and verified 13 hybrid strains. All of these hybrid strains showed improved stress resistance as seen in the ale parent, including improved survival at the end of fermentation. Importantly, some of the strains showed improved fermentation rates using 18°Plato at 18–25°C. Uniparental mitochondrial DNA inheritance was observed mostly from the S. cerevisiae parent. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
838.
Biofiltration is a cost-effective technology for removing air contaminants from animal facilities. Kinetic analysis can be helpful in understanding and designing the process but has not been performed on full-scale filters treating complex mixtures. In this study, kinetics was investigated in a full-scale biological filter treating air pollutants from a pig facility. Due to the high air flow rates used in the filter, both a plug flow model and a model based on complete mixing were tested with respect to kinetic order and Michaelis-Menten kinetics. Application of these models only gave poor to moderate agreement with air filter removal data. Two alternative kinetic models (Stover-Kincannon model and Grau second-order model) adopted from wastewater biofiltration process analysis were introduced to analyze contaminant removal in the biological air filter. Data analysis demonstrated the applicability of these two models with a high degree of precision on contaminant removal in the biological air filter. Whereas the Stover-Kincannon model demonstrated that pollutant removal rates were related to the mass loading rates, the Grau second-order kinetic model indicated that the removal efficiencies were dependent on air loading rates. Therefore, the kinetic data can be used for comparing biofilter performances and for design purposes.  相似文献   
839.
This study explores the pharmacokinetics of 22-S-hydroxycholesterol (22SHC) in vivo in rats. We also carried out a metabolic study to explore whether the beneficial effects observed of 22SHC on glucose and lipid metabolism in vitro could be seen in vivo in rats. In the pharmacokinetic study, rats were given 50 mg/kg of [3H]22-S-hydroxycholesterol before absorption, distribution and excretion were monitored. In the metabolic study, the effect of 22SHC (30 mg/kg/day for 3 weeks) in rats on body weight gain [chow and high-fat diet (HFD)], serum lipids triacylglycerol (TAG) content and gene expression in liver and skeletal muscle were examined. Results showed that 22SHC was well absorbed after oral administration and distributed to most organs and mainly excreted in feces. Rats receiving 22SHC gained less body weight than their controls regardless whether the animals received chow diet or HFD. Moreover, we observed that animals receiving HFD had elevated levels of serum TAG while this was not observed for animals on HFD supplemented with 22SHC. The amount of TAG in liver was reduced after 22SHC treatment in animals receiving either chow diet or HFD. Gene expression analysis revealed that two genes (carnitine palmitoyltransferase 2 and uncoupling protein 3) involved in fatty acid oxidation and energy dissipation were increased in liver. Ucp3 expression (both protein and mRNA level) was increased in skeletal muscle, but insulin-stimulated glucose uptake and TAG content were unchanged. In conclusion, 22SHC seems to be an interesting model substance in the search of treatments for disorders involving aberrations in lipid metabolism.  相似文献   
840.
An experimental investigation of the flow behavior of three polypropylene melts with different molecular structures during extrusion through a coat‐hanger die is presented. Two linear and one long‐chain branched material, rheologically characterized in shear and elongation, were investigated. Using laser–Doppler velocimeter measurements of the velocity profiles across the gap height were performed at five various locations along the die. The uniformity of the velocity distribution along the die has been assessed using the maximum velocities v0 of the corresponding velocity profiles across the gap. The velocity distribution along the die changes with throughput and temperature. Regarding the rheological properties, it was found that the power‐law index of the viscosity as a function of shear rate has a decisive influence on the uniformity of flow but that the pronounced strain hardening in elongation typical of the long‐chain branched polypropylene is not reflected by the velocity distribution along the die. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号