Phase change random access memory alloys (PRAM or PCM) are a class of non-volatile memory that is thought as viable alternatives to flash memory technology or to supplement other memory technologies depending on the end applications and its key performance requirements. Ge2Sb2Te5 alloy (GST) is the most widely used chalcogenide material for PCM application, and has many unique properties, including strong temperature-dependent film properties, low thermal conductivity, and high electrical resistivity. Picosecond ultrasonics was used to make non-contact, non-destructive measurements of GST films on blanket wafers and directly on product wafers. On-product wafer measurements were made on various via array (0.5 μm and 1 μm between cell edges with CD size from 250 to 800 nm). Measurements have shown excellent correlation to cross-section SEM and were consistent with CMP polish times for both blanket and pattern wafer measurement. Excellent repeatability based on extensive measurements demonstrates the capability and reliability of picosecond ultrasonic technology. Picosecond ultrasonic measurements also provide rapid characterization across the whole wafer at production-worthy throughputs. 相似文献
Impedance match in Stirling type cryocoolers is important for the compressor efficiency and available acoustic power. This paper generalizes the basic principles concerning the efficiency and acoustic power output of the linear compressor. Starting from basic governing equations and mainly from the viewpoint of energy balance, the physical mechanisms behind the principles are clearly shown. Specially, this paper focuses on the impedance match for an existing compressor, where the current limit and displacement limit should also be taken into consideration when selecting a suitable impedance. Some case studies based on a commercial compressor are also provided for a deep understanding. 相似文献
Mechanically strong conducting hydrogels composed of poly(acrylamide) (PAAm) and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) have been synthesized through the construction of a special double-network (sDN) structure. The novelty of the sDN hydrogels lies in the introduction of PEDOT-PSS semi-interpenetrating polymer network (semi-IPN) hydrogel as the second network. Based on the experimental results and the double-network theory, an additional strengthening effect resulting from the formation of the PEDOT clusters in a three-step fracture process is proposed. The applicability of as-prepared PAAm/PEDOT-PSS sDN hydrogels in electromechanical actuators is also briefly discussed. 相似文献
In this paper, we investigate the problem of downlink precoding for the narrowband massive multi-user multiple-input multiple-output (MU-MIMO) system with low-resolution digital-to-analog converters (DACs). We introduce a low-complexity precoding scheme based on the alternating direction method of multipliers (ADMM) framework in this work. An efficient gradient descent (GD) algorithm with adaptive step-size determination mechanism (ASGD) is proposed to alleviate the computational complexity bottleneck of the inherent matrix inversion. Numerical results demonstrate that the ASGD precoder achieves an attractive trade-off between the performance and computational complexity compared with other counterparts.
Strained Si1-xGex and Si materials are successfully grown on Si substrate by ultraviolet light chemical vapor deposition under ultrahigh vacuum at a low substrate temperature of 450℃ and 480℃,respectively.At such low temperature,autodoping effects from the substrate and interdiffusion effects at each interface could be suppressed efficiently.The strained Si1-xGex and multilayer Si1-xGex /Si structures are examined by X-ray diffraction,SMIS,etc.,and it is found that the materials have good crystallinity and the rising and falling edges are steep.The technique has a capability of growing highquality Si1-xGex /Si strained layers. 相似文献
The ionic liquid analog, formed through the mixture of urea and AlCl3, has previously shown to serve as a low‐cost electrolyte for an aluminum‐graphite battery, while maintaining good performance and achieving high Coulombic efficiency. Undesirable are the relatively high viscosity and low conductivity of this electrolyte, when compared to chloroaluminate ionic liquids with organic cations. In this work, the fundamental changes to the electrolyte resulting from using derivatives of urea (N‐methyl urea and N‐ethyl urea), again mixed with AlCl3, are examined. These electrolytes are shown to have significantly lower viscosities (η = 45, 67, and 133 cP when using N‐ethyl urea, N‐methyl urea, and urea, respectively, at 25 °C). The associated batteries exhibit higher intrinsic discharge voltages (2.04 and 2.08 V for N‐methyl urea and N‐ethyl urea electrolytes, respectively, vs 1.95 V for urea system@100 mA g?1 specific current for ≈5 mg cm?2 loading), due to changes in concentrations of ionic species. Aluminum deposition is directly observed to primarily occur through reduction of Al2Cl7? when AlCl3 is present in excess, in contrast to previously suggested cationic Al‐containing species, via operando Raman spectroscopy performed during cyclic voltammetry. 相似文献