首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22736篇
  免费   1713篇
  国内免费   767篇
电工技术   1194篇
技术理论   4篇
综合类   1369篇
化学工业   3995篇
金属工艺   1108篇
机械仪表   1451篇
建筑科学   1799篇
矿业工程   469篇
能源动力   637篇
轻工业   1651篇
水利工程   375篇
石油天然气   1210篇
武器工业   167篇
无线电   2357篇
一般工业技术   3209篇
冶金工业   1224篇
原子能技术   278篇
自动化技术   2719篇
  2024年   64篇
  2023年   289篇
  2022年   453篇
  2021年   660篇
  2020年   547篇
  2019年   484篇
  2018年   515篇
  2017年   663篇
  2016年   578篇
  2015年   779篇
  2014年   942篇
  2013年   1197篇
  2012年   1323篇
  2011年   1412篇
  2010年   1197篇
  2009年   1130篇
  2008年   1197篇
  2007年   1145篇
  2006年   1237篇
  2005年   1185篇
  2004年   786篇
  2003年   730篇
  2002年   685篇
  2001年   582篇
  2000年   739篇
  1999年   781篇
  1998年   672篇
  1997年   603篇
  1996年   542篇
  1995年   488篇
  1994年   361篇
  1993年   270篇
  1992年   226篇
  1991年   176篇
  1990年   140篇
  1989年   120篇
  1988年   95篇
  1987年   45篇
  1986年   46篇
  1985年   45篇
  1984年   19篇
  1983年   4篇
  1982年   13篇
  1981年   13篇
  1980年   12篇
  1979年   6篇
  1978年   3篇
  1977年   3篇
  1976年   4篇
  1970年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
11.
12.
Large‐scale production of hydrogen from water‐alkali electrolyzers is impeded by the sluggish kinetics of hydrogen evolution reaction (HER) electrocatalysts. The hybridization of an acid‐active HER catalyst with a cocatalyst at the nanoscale helps boost HER kinetics in alkaline media. Here, it is demonstrated that 1T–MoS2 nanosheet edges (instead of basal planes) decorated by metal hydroxides form highly active edge 1T‐MoS 2 / edge Ni ( OH ) 2 heterostructures, which significantly enhance HER performance in alkaline media. Featured with rich edge 1T‐MoS 2 / edge Ni ( OH ) 2 sites, the fabricated 1T–MoS2 QS/Ni(OH)2 hybrid (quantum sized 1T–MoS2 sheets decorated with Ni(OH)2 via interface engineering) only requires overpotentials of 57 and 112 mV to drive HER current densities of 10 and 100 mA cm?2, respectively, and has a low Tafel slope of 30 mV dec?1 in 1 m KOH. So far, this is the best performance for MoS2‐based electrocatalysts and the 1T–MoS2 QS/Ni(OH)2 hybrid is among the best‐performing non‐Pt alkaline HER electrocatalysts known. The HER process is durable for 100 h at current densities up to 500 mA cm?2. This work not only provides an active, cost‐effective, and robust alkaline HER electrocatalyst, but also demonstrates a design strategy for preparing high‐performance catalysts based on edge‐rich 2D quantum sheets for other catalytic reactions.  相似文献   
13.
This study aimed at investigating the possible mechanisms of hepatic protective activity of Cichorium intybus L. (chicory) in acute liver injury. Pathological observation, reactive oxygen species (ROS) detection and measurements of biochemical indexes on mouse models proved hepatic protective effect of Cichorium intybus L. Identification of active compounds in Cichorium intybus L. was executed through several methods including ultra performance liquid chromatography/time of flight mass spectrometry (UPLC-TOF-MS). Similarity ensemble approach (SEA) docking, molecular modeling, molecular docking, and molecular dynamics (MD) simulation were applied in this study to explore possible mechanisms of the hepato-protective potential of Cichorium intybus L. We then analyzed the chemical composition of Cichorium intybus L., and found their key targets. Furthermore, in vitro cytological examination and western blot were used for validating the efficacy of the selected compounds. In silico analysis and western blot together demonstrated that selected compound 10 in Cichorium intybus L. targeted Akt-1 in hepatocytes. Besides, compound 13 targeted both caspase-1 and Akt-1. These small compounds may ameliorate liver injury by acting on their targets, which are related to apoptosis or autophagy. The conclusions above may shed light on the complex molecular mechanisms of Cichorium intybus L. acting on hepatocytes and ameliorating liver injury.  相似文献   
14.
Incorporating high level of potato flour into wheat flour enhances nutritional values of bread but induces a series of problems that lead to the decline of the bread quality. To overcome the barrier, wheat gluten and carboxymethylcellulose (CMC) were added into potato–wheat composite flour to improve dough machinability and bread quality. The rheological properties, thermo-mechanical properties and microstructures of dough were investigated. The results showed that the interaction between gluten and CMC mitigated the discontinuity of gluten matrix and gluten protein aggregation caused by the addition of potato flour, which yielded a more branched and compact gluten network. The compact three-dimensional viscoelastic structure induced improvements of gas retention capacity and dough stability, making it mimic the machinability properties of wheat flour dough. Bread qualities were apparently improved with the combined use of 4% gluten and 6% CMC, of which specific volume increased by 42.86%, and simultaneously, hardness reduced by 75.93%.  相似文献   
15.
16.
With superior properties of Mg such as high hydrogen storage capacity (7.6 wt% H/MgH2), low price, and low density, Mg has been widely studied as a promising candidate for solid-state hydrogen storage systems. However, a harsh activation procedure, slow hydrogenation/dehydrogenation process, and a high temperature for dehydrogenation prevent the use of Mg-based metal hydrides for practical applications. For these reasons, Mg-based alloys for hydrogen storage systems are generally alloyed with other elements to improve hydrogen sorption properties. In this article, we have added Na to cast Mg–La alloys and achieved a significant improvement in hydrogen absorption kinetics during the first activation cycle. The role of Na in Mg–La has been discussed based on the findings from microstructural observations, crystallography, and first principles calculations based on density functional theory. From our results in this study, we have found that the Na doped surface of Mg–La alloy systems have a lower adsorption energy for H2 compared to Na-free surfaces which facilitates adsorption and dissociation of hydrogen molecules leading to improvement of absorption kinetic. The effect of Na on the microstructure of these alloys, such as eutectic refinement and a density of twins is not highly correlated with absorption kinetics.  相似文献   
17.
As the development of cloud computing and the convenience of wireless sensor netowrks, smart devices are widely used in daily life, but the security issues of the smart devices have not been well resolved. In this paper, we present a new NTRU-type public-key cryptosystem over the binary field. Specifically, the security of our scheme relies on the computational intractability of an unbalanced sparse polynomial ratio problem (DUSPR). Through theoretical analysis, we prove the correctness of our proposed cryptosystem. Furthermore, we implement our scheme using the NTL library, and conduct a group of experiments to evaluate the capabilities and consuming time of encryption and decryption. Our experiments result demonstrates that the NTRU-type public-key cryptosystem over the binary field is relatively practical and effective.  相似文献   
18.
Y2Hf2O7 possesses low thermal conductivity and high melting point, which make it promising for a new anti-ablation material. For evaluating the thermal stability and the potential applications of Y2Hf2O7 on anti-ablation protection of C/C composites, Y2Hf2O7 ceramic powder was synthesized by solution combustion method and Y2Hf2O7 coating was prepared on the surface of SiC coated C/C composites using SAPS. Results shown that the coating exhibits good ablation resistance under the heat flux of 2.4?MW/m2 with the linear and mass ablation rates are 0.16?μm?s?1 and ?0.028?mg?s?1, respectively, after ablation for 40?s. With the prolonging of the ablation time, the increasing thermal stress causes the increase of cracks. Moreover, the chemical erosion from SiO2 and the physical volatilization of low temperature molten products aggravate failure of the Y2Hf2O7 coating.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号