首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44122篇
  免费   4106篇
  国内免费   1989篇
电工技术   2499篇
技术理论   2篇
综合类   2526篇
化学工业   7655篇
金属工艺   2633篇
机械仪表   2953篇
建筑科学   3015篇
矿业工程   1292篇
能源动力   1286篇
轻工业   2959篇
水利工程   650篇
石油天然气   2473篇
武器工业   352篇
无线电   5386篇
一般工业技术   5966篇
冶金工业   2442篇
原子能技术   512篇
自动化技术   5616篇
  2024年   188篇
  2023年   844篇
  2022年   1403篇
  2021年   2164篇
  2020年   1545篇
  2019年   1434篇
  2018年   1506篇
  2017年   1532篇
  2016年   1445篇
  2015年   1908篇
  2014年   2278篇
  2013年   2724篇
  2012年   2829篇
  2011年   3184篇
  2010年   2514篇
  2009年   2492篇
  2008年   2481篇
  2007年   2218篇
  2006年   2318篇
  2005年   1849篇
  2004年   1352篇
  2003年   1216篇
  2002年   1133篇
  2001年   998篇
  2000年   957篇
  1999年   999篇
  1998年   842篇
  1997年   715篇
  1996年   631篇
  1995年   528篇
  1994年   409篇
  1993年   274篇
  1992年   229篇
  1991年   201篇
  1990年   171篇
  1989年   153篇
  1988年   100篇
  1987年   86篇
  1986年   55篇
  1985年   49篇
  1984年   34篇
  1983年   39篇
  1982年   30篇
  1981年   23篇
  1980年   26篇
  1979年   17篇
  1978年   15篇
  1976年   18篇
  1975年   10篇
  1973年   13篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
The purpose of this study was to investigate the effectiveness of a haptic augmented simulation in learning physics. The results indicate that haptic augmented simulations, both the force and kinesthetic and the purely kinesthetic simulations, were more effective than the equivalent non-haptic simulation in providing perceptual experiences and helping elementary students create multimodal representations of the movements of gears. However, in most cases, force feedback was needed to construct a fully loaded multimodal representation that helps students to comprehend later instruction with less sensory modalities. In addition, the force and kinesthetic simulation was effective in helping to transfer knowledge to new learning situations. These findings suggest that it is important to help elementary students make a solid cognitive grounding with the use of a perceptual anchor.  相似文献   
992.
Multicore architectures are evolving with the promise of extreme performance for the classes of applications that require high performance and large bandwidth of memory. Irregular reduction is one of important computation patterns for many complex scientific applications, and it typically requires high performance and large bandwidth of memory. In this article, we propose region-based parallelization techniques for irregular reductions on multicore architectures with explicitly managed memory hierarchies. Managing memory hierarchy in software requires a lot of programming efforts and tends to be error-prone. The difficulties are even worse for applications with irregular data access patterns. To relieve the burden of memory management from programmers, we develop abstractions, particularly targeted to irregular reduction, for structuring parallel tasks, mapping the parallel tasks to processing units and scheduling data transfers between the memory hierarchies. Our framework employs iteration reordering based on regions of data along with dynamic scheduling of parallel tasks. We experimentally evaluate the effectiveness of our techniques for irregular reduction kernels on the Cell processor embedded in a Sony PlayStation3. Experimental results show the speedups of 8 to 14 on the six available SPEs.  相似文献   
993.
The task of geolocating targets from airborne video is required for many applications in surveillance, law enforcement, reconnaissance, etc. The usual approaches to target geolocation involve terrain data, single target tracking, gimbal control of camera heads, altimeters, etc. The main goal of this research is to eliminate those requirements and still develop an accurate, efficient, and robust vision-based method for geolocation that can be carried out for multiple targets simultaneously. In that sense, our main contributions to the state-of-the-art in geolocation are fourfold: 1) to eliminate the requirement for gimbal control of the cameras or any particular path planning control for the UAV; 2) to perform instaneous geolocation of multiple targets; 3) to eliminate the requirements for geo-referenced terrain database (elevation maps) or for an altimeter that provides the UAV’s and target’s altitudes; and 4) to use one single camera while still maintaining good overall accuracy. In order to achieve that, the only requirements for our proposed method are: that the intrinsic parameters of the camera be known; that the on board camera be equipped with global positioning system (GPS) and inertial measurement unit (IMU); and that the height of the vehicle can be calculated using feature points extracted from the ground surrounding the image of the targets. To satisfy the first two requirements, we developed and tested a robust calibration procedure that can estimate not only the intrinsic parameters of the camera, but also the IMU-camera parameters (also know in the robotic circles as the hand-eye calibration). The last requirement was addressed using a pseudo-stereo vision technique that maximizes the distance between stereo pairs (baseline) while keeping large the number of common feature points extracted by the algorithm. The result is a method that can reach approximately 25 m of accuracy for an UAV flying at 155 m away from the target. Such performance is demonstrated by computer simulation, in-scale data using a model city, and real airborne video with ground truth.  相似文献   
994.
Multiwalled carbon nanotubes (MWNTs) grafted chitosan (CS) nanowire (NW) was prepared by phase separation method. Glucose oxidase (GOx) was sequentially immobilized into MWNT-CS-NW to obtain MWNT-CS-NW/GOx biosensor. Field emission scanning electron microscopy (FESEM) images of MWNT-CS-NW/GOx reveals the existence of MWNT and CS. Cyclic voltammetry and amperometry were used to evaluate the electrochemical determination of glucose. The MWNT-CS-NW/GOx biosensor shows an excellent performance for glucose at +0.34 V with a high sensitivity (5.03 μA/mM) and lower response time (3 s) in a wide concentration range of 1-10 mM (correlation coefficient of 0.9988). In addition, MWNT-CS-NW/GOx biosensor possesses better reproducibility, storage stability and there is negligible interference from other electroactive components.  相似文献   
995.
A solid oxide fuel cell (SOFC) with a thin-film yttria-stabilized zirconia (YSZ) electrolyte was developed and tested. This novel SOFC shows a similar multilayer set-up as other current anode-supported SOFCs and is composed of a Ni/8YSZ anode, a gas-tight 8YSZ electrolyte layer, a dense Sr-diffusion barrier layer and a LSCF cathode. To increase the power density and lower the SOFC operating temperature, the thickness of the electrolyte layer was reduced from around 10 μm in current cells to 1 μm, using a nanoparticle deposition method. By using the novel 1 μm electrolyte layer, the current density of our SOFC progressed to 2.7, 2.1 and 1.6 A/cm2 at operation temperatures of 800, 700 and 650°C, respectively, and out-performs all similar cells reported to date in the literature. An important consideration is also that cost-effective dip-coating and spin-coating methods are applied for the fabrication of the thin-film electrolyte. Processing of 1 μm layers on the very porous anode substrate material was initially experienced as very difficult and therefore 8YSZ nanoparticle coatings were developed and optimized on porous 8YSZ model substrates and transferred afterwards to regular anode substrates. In this paper, the preparation of the novel SOFC is shown and its morphology is illustrated with high resolution SEM pictures. Further, the performance in a standard SOFC test is demonstrated.  相似文献   
996.
The wavelet scaling functions of spline wavelets are used to construct the displacement interpolation functions of triangular and rectangular thin plate elements. The displacement shape functions are then expressed by spline wavelet functions. A spline wavelet finite element formulation of thin plate bending is developed by using the virtual work principle. Two numerical examples have shown that the bending deflections and moments of thin plates agree well with those obtained by the differential equations and conventional elements. It is demonstrated that the current spline wavelet finite element method (FEM) can achieve a high numerical accuracy and converges fast. The proposed spline wavelet finite element formulation has a wide range of applicability since it is developed in the same way like conventional displacement-based FEM.  相似文献   
997.
Graph OLAP: a multi-dimensional framework for graph data analysis   总被引:2,自引:1,他引:1  
Databases and data warehouse systems have been evolving from handling normalized spreadsheets stored in relational databases, to managing and analyzing diverse application-oriented data with complex interconnecting structures. Responding to this emerging trend, graphs have been growing rapidly and showing their critical importance in many applications, such as the analysis of XML, social networks, Web, biological data, multimedia data and spatiotemporal data. Can we extend useful functions of databases and data warehouse systems to handle graph structured data? In particular, OLAP (On-Line Analytical Processing) has been a popular tool for fast and user-friendly multi-dimensional analysis of data warehouses. Can we OLAP graphs? Unfortunately, to our best knowledge, there are no OLAP tools available that can interactively view and analyze graph data from different perspectives and with multiple granularities. In this paper, we argue that it is critically important to OLAP graph structured data and propose a novel Graph OLAP framework. According to this framework, given a graph dataset with its nodes and edges associated with respective attributes, a multi-dimensional model can be built to enable efficient on-line analytical processing so that any portions of the graphs can be generalized/specialized dynamically, offering multiple, versatile views of the data. The contributions of this work are three-fold. First, starting from basic definitions, i.e., what are dimensions and measures in the Graph OLAP scenario, we develop a conceptual framework for data cubes on graphs. We also look into different semantics of OLAP operations, and classify the framework into two major subcases: informational OLAP and topological OLAP. Second, we show how a graph cube can be materialized by calculating a special kind of measure called aggregated graph and how to implement it efficiently. This includes both full materialization and partial materialization where constraints are enforced to obtain an iceberg cube. As we can see, due to the increased structural complexity of data, aggregated graphs that depend on the underlying “network” properties of the graph dataset are much harder to compute than their traditional OLAP counterparts. Third, to provide more flexible, interesting and informative OLAP of graphs, we further propose a discovery-driven multi-dimensional analysis model to ensure that OLAP is performed in an intelligent manner, guided by expert rules and knowledge discovery processes. We outline such a framework and discuss some challenging research issues for discovery-driven Graph OLAP.  相似文献   
998.
薛晗  李迅  马宏绪 《自动化学报》2009,35(7):959-964
模糊相关机会规划(Fuzzy dependent-chance programming, FDCP)因其非线性、非凸性及模糊性,对经典的优化理论提出了极大的挑战. 本文为解决复杂的模糊相关机会规划问题设计了一种基于模糊模拟的蚁群优化算法, 证明了该算法的收敛性,并通过估算期望收敛时间以分析蚁群优化算法的收敛速度. 数值案例研究验证了该算法的有效性、稳定性及准确性.  相似文献   
999.
1000.
We investigate the state complexity of basic operations for suffix-free regular languages. The state complexity of an operation for regular languages is the number of states that are necessary and sufficient in the worst-case for the minimal deterministic finite-state automaton that accepts the language obtained from the operation. We establish the precise state complexity of catenation, Kleene star, reversal and the Boolean operations for suffix-free regular languages.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号