首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69331篇
  免费   6621篇
  国内免费   3167篇
电工技术   3906篇
技术理论   2篇
综合类   4458篇
化学工业   11839篇
金属工艺   4069篇
机械仪表   4383篇
建筑科学   5088篇
矿业工程   2282篇
能源动力   1850篇
轻工业   4862篇
水利工程   1223篇
石油天然气   4275篇
武器工业   564篇
无线电   8253篇
一般工业技术   8472篇
冶金工业   3254篇
原子能技术   752篇
自动化技术   9587篇
  2024年   414篇
  2023年   1296篇
  2022年   2228篇
  2021年   2982篇
  2020年   2239篇
  2019年   2014篇
  2018年   2197篇
  2017年   2408篇
  2016年   2142篇
  2015年   2844篇
  2014年   3383篇
  2013年   4045篇
  2012年   4525篇
  2011年   4938篇
  2010年   4076篇
  2009年   3910篇
  2008年   3751篇
  2007年   3568篇
  2006年   3899篇
  2005年   3205篇
  2004年   2235篇
  2003年   1884篇
  2002年   1659篇
  2001年   1487篇
  2000年   1620篇
  1999年   1762篇
  1998年   1538篇
  1997年   1307篇
  1996年   1174篇
  1995年   983篇
  1994年   852篇
  1993年   586篇
  1992年   441篇
  1991年   375篇
  1990年   267篇
  1989年   218篇
  1988年   189篇
  1987年   123篇
  1986年   100篇
  1985年   59篇
  1984年   31篇
  1983年   20篇
  1982年   29篇
  1981年   18篇
  1980年   23篇
  1979年   11篇
  1978年   7篇
  1977年   5篇
  1976年   14篇
  1975年   9篇
排序方式: 共有10000条查询结果,搜索用时 24 毫秒
991.
Herein, a novel Bi3+-activated Ca3Y2Ge3O12 (CYGO) narrow-band cyan-emitting phosphor was synthesized. It can be excited from 320–420 nm, and the strongest excitation peak is located at 370 nm, which is suitable for current near-ultraviolet (NUV) chips perfectly. The full width at half maximum is at 52 nm. By analyzing the crystal structure of the sample, we infer that the Bi3+ ions replace the Y3+ site to form a highly symmetrical BiO6 octahedron. The time-resolved photoluminescence (TRPL) spectra of CYGO: Bi3+ reveal that the only a single emission center exists in the host lattice. A warm white light–emitting diode (WLED) device with a low correlated color temperature (3148 K) and a high color rendering index (90.2) was fabricated by using the as-prepared sample, and the significant thermal stability of CYGO: Bi3+ guarantees its potential application in WLEDs. It is verified that the structure with only one crystallographic Y site for Bi3+ dopant occupation and highly symmetrical and dense structure is conducive to realize narrow-band emission, which will provide experience for researchers to explore more Bi3+-activated phosphors used for high-end lighting.  相似文献   
992.
Pang  L.  Zhang  Z. W.  Zhao  Y.  Huang  S. Q.  Hu  Q. R.  Zhao  J. J.  Yang  K.  Sun  S. H. 《Combustion, Explosion, and Shock Waves》2021,57(5):597-606
Combustion, Explosion, and Shock Waves - Explosion venting experiments of corn starch are carried out in a small-scale container. With the help of a high-speed camera and a pressure sensor, an...  相似文献   
993.
Hu  Chuang  Zang  Guo-Long  Luo  Jun-Tao  Liu  Qi  Zhao  Quan 《Journal of Applied Electrochemistry》2021,51(6):847-859
Journal of Applied Electrochemistry - The electrocatalytic reduction of CO2 is a promising research direction in resource utilization and sustainable energy development. However, there is still a...  相似文献   
994.
Adhesive polymer is a common and important material used for packaging of microelectronics and microsystem by attaching dies onto packaging shell, and its mechanical property plays a vital role in isolating dies from the thermal stress of substrate. Therefore, it is extremely significant to evaluate the polymer property in a specific packaging process. The molecular dynamics (MD) simulation is conducted in this article to investigate the material properties of the cross-linked epoxy resin formed by epoxy resin component diglycidyl ether bisphenol A (DGEBA) and curing agent 1,6-Diaminohexane. The polymer network with conversion up to 87.5% is successfully generated and simulated by constant pressure-constant temperature ensemble (NPT) and canonical ensemble (NVT) at different temperatures of curing process. Glass transition temperature (Tg) and Young's modulus are extracted and the predicted material properties are in great agreement with the experimental data. The conclusion provides a guideline to design the special curing process for different adhesive requirements.  相似文献   
995.
In this paper, a multi-layer gas diffusion layer (GDL) is designed. The GDL consists of a single carbon paper backing layer and dual microporous layers (MPLs). Moreover, the effects of thickness and hydrophobicity of double MPL on the performance of proton exchange membrane fuel cells are investigated. From the test results of the water contact angle, conductivity, pore size distribution, and the polarization curve, it is found that the thickness adjustment increases the number of 0.5 to 7 μm and 20 to 100 μm pores in GDL, which is more conducive to water discharge. Therefore, the thickness adjustment is more favorable to the cell performance under high humidity. While the gradient hydrophobic design makes the MPL of the modified intermediate layer have a certain water-retaining capacity to humidify the reaction gas, which has better effect under low humidity. At last, the results show that the optimized GDL meets a limit power density of 1.772 W/cm2 under 60% humidification and 1.600 W/cm2 under 100% humidification.  相似文献   
996.
A series of bio-rubber (BR) tougheners for thermosetting epoxy resins was prepared by grafting renewable fatty acids with different chain lengths onto epoxidized soybean oil at varying molar ratios. BR-toughened samples were prepared by blending BRs with diglycidyl ether of bisphenol A resins, Epon 828 and Epon 1001F, at different weight fractions and stoichiometrically cured using an amine curing agent, 4, 4′-methylene biscyclohexanamine (PACM). Fracture toughness properties of the unmodified and BR toughened polymer samples—including critical strain energy release rate (GIc), and critical stress intensity factor (KIc)—were measured to investigate the toughening effect of prepared BRs. It was found that the degree of phase separation and toughening were more controllable relative to similar polymers cured using the aromatic curing agent Epikure W, and the use of higher molecular epoxy resins produces a synergistic effect increasing the toughness much more than similar polymers made with lower molecular weight epoxy resins. Average BR domain sizes ranging from 200 to 900 nm were observed, and formulations with GIc, values KIc as high as 1.0 kJ/m2 and 1.4 MPa m1/2 were attained respectively for epoxy systems with Tg greater than 130°C.  相似文献   
997.
A series of bio-rubber (BR) reactive tougheners for thermosetting epoxy resins was prepared by grafting renewable saturated fatty acids of different chain lengths (C6-C14) onto epoxidized soybean oil (ESO) at varying molar ratios. The tunable nature of the BR systems derives from the architecture and functionality of naturally occurring molecules. Control of BR reactivity and molecular weight by varying the degree of grafting and the chain length of the fatty acid was demonstrated. The BR-toughened samples were prepared by blending BRs with diglycidyl ether of bisphenol A (DGEBA), Epon 828, and stoichiometrically curing the mixture using an aromatic amine hardener, diethyl toluene diamine (Epikure W). Fracture surface morphology studies showed that tuning of phase separated particle sizes was possible depending on the BR type and weight fraction. The resulting toughening effect was evaluated by measuring the fracture toughness of control and toughened polymer samples. The use of BRs significantly improved the critical strain energy release rate and critical stress intensity factor values of thermosetting polymer samples without significantly reducing Tg and modulus. In addition to toughening and adding renewable content to petroleum-based thermosetting epoxy systems these new tougheners have low viscosity compared to common alternatives and aid ease of processing.  相似文献   
998.
Achieving synergetic improvements of mechanical strength, toughness, and thermal stability of epoxy resin has been a crucial but very challenging issue. Herein, to explore a new solution for circumventing this issue, polyimide microspheres were successfully prepared through the inverse nonaqueous emulsion process, and the structure, size distribution and morphologies of polyimide (PI) microspheres were comprehensively investigated. Then the PI microspheres were incorporated in epoxy resin matrix to systematically investigate the mechanical and thermal properties of obtained epoxy/PI microspheres composites. It was found that the PI microspheres can not only enhance the mechanical strength of epoxy resin, but also significantly improve the toughness. Specially, the epoxy-based composites containing 3 wt% PI microspheres exhibit a 47% increase in tensile strength, while the GIC and Charpy impact strength increase by 106% and 200%, respectively. The toughing mechanism of epoxy/PI microspheres composites was discussed. Moreover, the PI microspheres can also endow the epoxy resin with excellent thermal stability and heat resistance. Thus, this work may open a new opportunity to synergistically enhance the mechanical and thermal properties of epoxy-based composites and may also give some valuable inspiration for the rational design of other high-performance thermosetting composites.  相似文献   
999.
A simple and feasible method to enhance the wear resistance of ultra-high molecular weight polyethylene (UHMWPE) fibers was reported. The graphite oxide (GO) prepared using improved Hummer's method was surface modified with hexadecylamine to improve its compatibility with UHMWPE. Combined with well-dispersion of modified-GO (m-GO) in dichloromethane and the fact that the viscosity of UHMWPE suspension can be decreased by dichloromethane, the well dispersed m-GO/dichloromethane was added into UHMWPE suspension to improve m-GO dispersion in UHMWPE fibers. Finally, UHMWPE fibers with different m-GO concentration were prepared using gel spinning technology. The effect of m-GO concentration on the structure and properties of modified UHMWPE fibers were investigated. The results indicated that the melting temperature and crystallinity of m-GO modified UHMWPE fibers increased with increasing of m-GO concentration, while the fiber's crystal sizes and orientation increased, thus the tensile strength of m-GO modified UHMWPE fibers remained almost undamaged. The introduction of m-GO is beneficial to the formation of smooth transfer film on fiber's surface, which enhanced the self-lubrication of UHMWPE fibers. Compared with pure UHMWPE fiber, the UHMWPE fiber containing 1.5 wt% m-GO had enhanced wear resistance by 55.4% and still maintained high tensile strength of 29.98 cN dtex−1.  相似文献   
1000.
针对传统疾病诊疗模式中疾病监护实时性差的缺点,以低功耗、高速STM32处理器为核心,设计一款可穿戴式无线体域网信息监测系统.系统由无线传感网络、中央监测模块和手机终端组成,具有实时采集、数据存储、无线传输和监测人体生命体征信 息的功能.测试结果表明,系统运行稳定,性能指标均达到系统设定要求,应用于医疗监测可起到实时监护、早期预防的作用.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号