The rind of rambutan, which is normally discarded was found to contain extremely high antioxidant activity when assessed using several methods. Although having a yield of only 18%, the ethanolic rambutan rind extract had a total phenolic content of 762 ± 10 mg GAE/g extract, which is comparable to that of a commercial preparation of grape seed extract. Comparing the extract’s pro-oxidant capabilities with vitamin C, α-tocopherol, grape seed and green tea, the rind had the lowest pro-oxidant capacity. In addition, the extract at 100 μg/ml was seen to limit oxidant-induced cell death (DPPH at 50 μM) by apoptosis to an extent similar to that of grape seed. The extracts were not cytotoxic to normal mouse fibroblast cells or splenocytes while the powderised rind was seen to have heavy metals contents far below the permissible levels for nutraceuticals. Our study for the first time reveals the high phenolic content, low pro-oxidant capacity and strong antioxidant activity of the extract from rind of Nephelium lappaceum. This extract, either alone or in combination with other active principles, can be used in cosmetic, nutraceutical and pharmaceutical applications. 相似文献
Overland flow is an important hydrological response of catchments to rainstorms and contributes to soil erosion and nutrient loss. The kinematic wave model is known to describe the transformation of rainfall to overland flow. Through this, field studies were conducted on a hillslope to simulate water scouring from upstream with a complex surface condition, which was covered with different sizes and percentages of stones. Existing semi-analytical and numerical models were adopted to describe the overland flow in the field. Results indicate that both semi-analytical and numerical models could be applied to describe the process of overland flow. Furthermore, predicted outflow rates by the semi-analytical and the numerical model showed strong correlation with the field measured outflow rates, respectively (NS?=?(0.926, 0.942, 0.992), RE?=?(5.5%, 4.7%, 1.7%) for the semi-analytical model, and NS?=?(0.817, 0.952, 0.992), RE?=?(5.5%, 5.5%, 2.1%) for the numerical model). Besides, hydraulic parameters (Reynolds number-Re, Froude numbers-Fr, Darcy-Weisbach-f, hydraulic shear stress-τ, stream power-ω, water wave celerity-vw) at any time and distance could be described by the semi-analytical method, and the parameter n/h (an important factor indicating the energy of water and wave flow celerity) could successfully characterize the average hydraulic parameters, and all of the hydraulic parameters are fitted to the expression of y?=?a(n/h)b.