首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9467篇
  免费   645篇
  国内免费   347篇
电工技术   429篇
综合类   393篇
化学工业   1715篇
金属工艺   451篇
机械仪表   433篇
建筑科学   623篇
矿业工程   172篇
能源动力   305篇
轻工业   552篇
水利工程   118篇
石油天然气   335篇
武器工业   35篇
无线电   1522篇
一般工业技术   1357篇
冶金工业   717篇
原子能技术   79篇
自动化技术   1223篇
  2024年   26篇
  2023年   126篇
  2022年   234篇
  2021年   319篇
  2020年   207篇
  2019年   202篇
  2018年   266篇
  2017年   266篇
  2016年   265篇
  2015年   271篇
  2014年   394篇
  2013年   569篇
  2012年   507篇
  2011年   633篇
  2010年   557篇
  2009年   535篇
  2008年   588篇
  2007年   471篇
  2006年   476篇
  2005年   349篇
  2004年   311篇
  2003年   310篇
  2002年   275篇
  2001年   242篇
  2000年   231篇
  1999年   243篇
  1998年   295篇
  1997年   233篇
  1996年   216篇
  1995年   170篇
  1994年   141篇
  1993年   99篇
  1992年   67篇
  1991年   56篇
  1990年   44篇
  1989年   47篇
  1988年   32篇
  1987年   29篇
  1986年   24篇
  1985年   16篇
  1984年   8篇
  1983年   8篇
  1982年   7篇
  1981年   9篇
  1980年   15篇
  1979年   13篇
  1978年   7篇
  1976年   13篇
  1975年   9篇
  1974年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Support vector machines (SVM) is an effective tool for building good credit scoring models. However, the performance of the model depends on its parameters’ setting. In this study, we use direct search method to optimize the SVM-based credit scoring model and compare it with other three parameters optimization methods, such as grid search, method based on design of experiment (DOE) and genetic algorithm (GA). Two real-world credit datasets are selected to demonstrate the effectiveness and feasibility of the method. The results show that the direct search method can find the effective model with high classification accuracy and good robustness and keep less dependency on the initial search space or point setting.  相似文献   
102.
This paper proposes a nonlinear generalization of the popular maximum-likelihood linear regression (MLLR) adaptation algorithm using kernel methods. The proposed method, called maximum penalized likelihood kernel regression adaptation (MPLKR), applies kernel regression with appropriate regularization to determine the affine model transform in a kernel-induced high-dimensional feature space. Although this is not the first attempt of applying kernel methods to conventional linear adaptation algorithms, unlike most of other kernelized adaptation methods such as kernel eigenvoice or kernel eigen-MLLR, MPLKR has the advantage that it is a convex optimization and its solution is always guaranteed to be globally optimal. In fact, the adapted Gaussian means can be obtained analytically by simply solving a system of linear equations. From the Bayesian perspective, MPLKR can also be considered as the kernel version of maximum a posteriori linear regression (MAPLR) adaptation. Supervised and unsupervised speaker adaptation using MPLKR were evaluated on the Resource Management and Wall Street Journal 5K tasks, respectively, achieving a word error rate reduction of 23.6% and 15.5% respectively over the speaker-independently model.  相似文献   
103.
Lai G  Yatagai T 《Applied optics》1994,33(25):5935-5940
The Fourier transform method is applied to analyze the initial phase of linear and equispaced Fizeau fringes. We develop an algorithm for high-precision phase measurement by using the Fourier coefficient that corresponds to the spatial frequency of the Fizeau fringes, and we describe methods for determining the fringe carrier frequency. Errors caused by carrier frequency fluctuation and data truncation are studied theoretically and by computer simulation. To demonstrate the method we apply it to the real-time calibration of a piezoelectric transducer mirror in a Twyman-Green interferometer.  相似文献   
104.
The reaction between silicon carbide and aluminium to form silicon and Al4C3 in SiC particle-reinforced aluminium fabricated by liquid aluminium infiltration was most severe near the original interface between liquid aluminium and the SiC preform. This resulted in the highest concentration of Al4C3 and the lowest concentrations of silicon and SiC in the part of the composite near this interface. In particular, the silicon concentration was highest in the bottom centre of the composite when infiltration occurred from the top, because silicon diffused toward the surrounding aluminium melt before solidification. These non-uniform phase distributions, as measured by X-ray diffraction and differential scanning calorimetry, did not cause any non-uniform shear strength distribution. However, excessive reaction between SiC and aluminium, as observed for an infiltration (=mould=liquid metal) temperature of 780° C, caused the tensile strength to decrease. In the case where a steel mould was used during infiltration at 780° C, iron-containing precipitates, such as ternary Al-Fe-Si, were observed in the part of the composite within 5 mm from the above-mentioned interface; their formation was related to the silicon out-diffusion in the form of liquid Al-Si; they caused the shear strength to be lower in this part of the composite; larger such precipitates (up to 100 m) were observed in the excess aluminium adjacent to the cast composite. For pure aluminium as the infiltrating metal, the optimum infiltration temperature for the highest tensile strength was 700° C. An infiltration temperature of 670° C resulted in incomplete infiltration, which was more severe when a steel mould rather than a graphite mould was used because of the higher thermal conductivity of the former.  相似文献   
105.
RADIOIMMUNOTOXICOLOGICALEFFECTOFENRICHEDURANIUMONCENTRALANDPERIPHERALIMMUNECELLSANDTHEPROTECTIVEACTIONOFIL-1ANDIL-2¥ZhuShoupe...  相似文献   
106.
Platinum (Pt) is regarded as a promising electrocatalyst for hydrogen evolution reaction (HER). However, its application in an alkaline medium is limited by the activation energy of water dissociation, diffusion of H+, and desorption of H*. Moreover, the formation of effective structures with a low Pt usage amount is still a challenge. Herein, guided by the simulation discovery that the edge effect can boost local electric field (LEF) of the electrocatalysts for faster proton diffusion, platinum nanocrystals on the edge of transition metal phosphide nanosheets are fabricated. The unique heterostructure with ultralow Pt amount delivered an outstanding HER performance in an alkaline medium with a small overpotential of 44.5 mV and excellent stability for 80 h at the current density of −10 mA cm−2. The mass activity of as-prepared electrocatalyst is 2.77 A mg−1Pt, which is 15 times higher than that of commercial Pt/C electrocatalysts (0.18 A mg−1Pt). The density function theory calculation revealed the efficient water dissociation, fast adsorption, and desorption of protons with hybrid structure. The study provides an innovative strategy to design unique nanostructures for boosting HER performances via achieving both synergistic effects from hybrid components and enhanced LEF from the structural edge effect.  相似文献   
107.
Flexible transparent supercapacitors (FTSs) have aroused considerable attention. Nonetheless, balancing energy storage capability and transparency remains challenging. Herein, a new type of FTSs with both excellent energy storage and superior transparency is developed based on PEDOT:PSS/MXene/Ag grid ternary hybrid electrodes. The hybrid electrodes can synergistically utilize the high optoelectronic properties of Ag grids, the excellent capacitive performance of MXenes, and the superior chemical stability of PEDOT:PSS, thus, simultaneously demonstrating excellent optoelectronic properties (T: ≈89%, Rs: ≈39 Ω sq−1), high areal specific capacitance, superior mechanical softness, and excellent anti-oxidation capability. Due to the excellent comprehensive performances of the hybrid electrodes, the resulting FTSs exhibit both high optical transparency (≈71% and ≈60%) and large areal specific capacitance (≈3.7 and ≈12 mF cm−2) besides superior energy storage capacity (P: 200.93, E: 0.24 µWh cm−2). Notably, the FTSs show not only excellent energy storage but also exceptional sensing capability, viable for human activity recognition. This is the first time to achieve FTSs that combine high transparency, excellent energy storage and good sensing all-in-one, which make them stand out from conventional flexible supercapacitors and promising for next-generation smart flexible energy storage devices.  相似文献   
108.
Bacterial trapping using nanonets is a ubiquitous immune defense mechanism against infectious microbes. These nanonets can entrap microbial cells, effectively arresting their dissemination and rendering them more vulnerable to locally secreted microbicides. Inspired by this evolutionarily conserved anti-infective strategy, a series of 15 to 16 residue-long synthetic β-hairpin peptides is herein constructed with the ability to self-assemble into nanonets in response to the presence of bacteria, enabling spatiotemporal control over microbial killing. Using amyloid-specific K114 assay and confocal microscopy, the membrane components lipoteichoic acid and lipopolysaccharide are shown to play a major role in determining the amyloid-nucleating capacity as triggered by Gram-positive and Gram-negative bacteria respectively. These nanonets displayed both trapping and killing functionalities, hence offering a direct improvement from the trap-only biomimetics in literature. By substituting a single turn residue of the non-amyloidogenic BTT1 peptide, the nanonet-forming BTT1-3A analog is produced with comparable antimicrobial potency. With the same sequence manipulation approach, BTT2-4A analog modified from BTT2 peptide showed improved antimicrobial potency against colistin-resistant clinical isolates. The peptide nanonets also demonstrated robust stability against proteolytic degradation, and promising in vivo efficacy and biosafety profile. Overall, these bacteria-responsive peptide nanonets are promising clinical anti-infective alternatives for circumventing antibiotic resistance.  相似文献   
109.
Inspired by mussel‐adhesion phenomena in nature, polydopamine (PDA) coatings are a promising route to multifunctional platforms for decorating various materials. The typical self‐polymerization process of dopamine is time‐consuming and the coatings of PDA are not reusable. Herein, a reusable and time‐saving strategy for the electrochemical polymerization of dopamine (EPD) is reported. The PDA layer is deposited on vertically aligned TiO2 nanotube arrays (NTAs). Owing to the abundant catechol and amine groups in the PDA layer, uniform Pt nanoparticles (NPs) are deposited onto the TiO2 NTAs and can effectively prevent the recombination of electron–hole pairs generated from photo‐electrocatalysis and transfer the captured electrons to participate in the photo‐electrocatalytic reaction process. Compared with pristine TiO2 NTAs, the as‐prepared Pt@TiO2 NTA composites exhibit surface‐enhanced Raman scattering sensitivity for detecting rhodamine 6G and display excellent UV‐assisted self‐cleaning ability, and also show promise as a nonenzymatic glucose biosensor. Furthermore, the mussel‐inspired electropolymerization strategy and the fast EPD‐reduced nanoparticle decorating process presented herein can be readily extended to various functional substrates, such as conductive glass, metallic oxides, and semiconductors. It is the adaptation of the established PDA system for a selective, robust, and generalizable sensing system that is the emphasis of this work.  相似文献   
110.
The instability of few‐layer black phosphorus (FL‐BP) hampers its further applications. Here, it can be demonstrated that the instability of FL‐BP can also be the advantage for application in biosensor. First, gold nanoparticle/FL‐BP (BP‐Au) hybrid is facilely synthesized by mixing Au precursor with FL‐BP. BP‐Au shows outstanding catalytic activity (K = 1120 s?1 g?1) and low activation energy (17.53 kJ mol?1) for reducing 4‐nitrophenol, which is attributed to the electron‐reservoir and electron‐donor properties of FL‐BP, and synergistic interaction of Au nanoparticles and FL‐BP. Oxidation of FL‐BP after catalytic reaction is further confirmed by transmission electron microscope, X‐ray photoelectron spectroscopy, and zeta potentials. Second, the catalytic activity of BP‐Au can be reversibly switched from “inactive” to “active” upon treatment with antibody and antigen in solution, thus providing a versatile platform for label‐free colorimetric detection of biomarkers. The sensor shows a wide detection range (1 pg mL?1 to –10 µg mL?1), high sensitivity (0.20 pg mL?1), and selectivity for detecting carcinoembryonic antigen (CEA). Finally, the biosensor has been used to detect CEA in colon and breast cancer clinical samples with satisfactory results. Therefore, the instability of BP can also be the advantage for application in detecting cancer biomarker in clinic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号