首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90668篇
  免费   7802篇
  国内免费   4086篇
电工技术   5717篇
技术理论   2篇
综合类   5786篇
化学工业   14032篇
金属工艺   4969篇
机械仪表   5231篇
建筑科学   6739篇
矿业工程   1854篇
能源动力   2649篇
轻工业   7098篇
水利工程   1816篇
石油天然气   3881篇
武器工业   677篇
无线电   12060篇
一般工业技术   11666篇
冶金工业   4621篇
原子能技术   1029篇
自动化技术   12729篇
  2024年   374篇
  2023年   1374篇
  2022年   2580篇
  2021年   3583篇
  2020年   2505篇
  2019年   2110篇
  2018年   2364篇
  2017年   2806篇
  2016年   2466篇
  2015年   3409篇
  2014年   4454篇
  2013年   5679篇
  2012年   6054篇
  2011年   6758篇
  2010年   5870篇
  2009年   5655篇
  2008年   5588篇
  2007年   5353篇
  2006年   5139篇
  2005年   4179篇
  2004年   2847篇
  2003年   2359篇
  2002年   2372篇
  2001年   2027篇
  2000年   1914篇
  1999年   1945篇
  1998年   1828篇
  1997年   1579篇
  1996年   1413篇
  1995年   1185篇
  1994年   923篇
  1993年   761篇
  1992年   607篇
  1991年   463篇
  1990年   386篇
  1989年   298篇
  1988年   252篇
  1987年   182篇
  1986年   152篇
  1985年   139篇
  1984年   100篇
  1983年   75篇
  1982年   68篇
  1981年   59篇
  1980年   51篇
  1979年   35篇
  1978年   32篇
  1977年   32篇
  1976年   54篇
  1973年   21篇
排序方式: 共有10000条查询结果,搜索用时 10 毫秒
991.
The structure evolution of silk fibroin (SF) in the nanocomposite films with graphene oxide (GO) was investigated and related to the enzymatic degradability and release property. The interaction with GO was found to induce conformation transition of SF from random coil to β-sheet. However, the surface binding constrained the rearrangement of the silk chains, leading to a decrease of β-sheet when GO content was more than 1.0%. The crystal structure of SF played a key role in the degradation of GO/SF composites. The preferential degradation of the hydrophilic blocks resulted in a faster degradation of SF films with higher β-sheet content. The addition of GO to SF matrix led to a slower release and a reduction of the burst release of RhB, the model compound. The release profile was well fitted to the Rigter–Peppas equation, from which the characteristic constant decreased and the diffusional exponent increased with increasing GO content but quickly leveled off when GO content was more than 1.0%. Degradation of the composites had little influence on the characteristic constant of RhB release, however, led to an increased diffusional exponent, which was more evident for the composites with higher β-sheet content.  相似文献   
992.
In this study, laser surface treatment was applied to alter the surface texturing and chemical compositions of fused deposition modeling (FDM)-printed PEEK/CF samples to improve the deficiency of inert surface of PEEK as adherend substrate. The influence of IR-laser parameters including treatment gaps, single pulse energy and pulse widths on surface properties and shear bond strength were discussed. The results indicated that surface roughness was enhanced with decreasing treatment gap or increasing pulse energy, which reached the highest value of Ra = 32.44 μm at 0.4*0.4 mm2 treatment gap and 300 mJ single pulse energy. By adjusting laser pulse width, surface wettability changed from hydrophobicity to hydrophilicity. After micro-second laser ablation, the texturing structure was changed and acted as mechanical interlocking effect, and therefore make the shear bond strengths improve from 3.28 to 6.42 MPa compared with the untreated groups. On the other hand, functional groups on substrate surface were activated after nano-second laser ablation, which contributes to an enhancement of shear bond strength through chemical interaction between adhesives and substrates. Therefore, our work highlights an efficient method of laser surface treatment on the adhesion property of FDM-printed substrates.  相似文献   
993.
Due to the low concentration of silver in water, most of the cellulose adsorbents exhibited low removal efficiency, which greatly limited their practical applications. Herein, a cellulose aerogel modified by thiosemicarbamide (CAT) was fabricated for reducing and adsorbing silver ions from low concentration wastewater. The characterization results concluded that CAT owned a three-dimensional spongy structure with many circular microspheres and a better specific surface area (19.37 m2 g−1), as well as the functional groups of ─C═N+─H and ─(C═S)─N. The static batch adsorption experiments demonstrated that CAT could reached the maximum removal percentage of 94.94% and adsorption capacity of 42.12 mg g−1 under the initial concentration of Ag(I) was 15 mg L−1 and the pH value was 7. Meanwhile, the adsorption of Ag(I) on CAT was second-order reaction, and the Langmuir model could better fit the adsorption process. In addition, CAT exhibited wide pH values (1–9) adaptability and excellent adsorption performance for silver through electrostatic interaction, chelation, and reduction. This study probably provides a new method as well as important experimental data and theoretical reference for the removal of silver ions and other metals.  相似文献   
994.
Sustainable development strategy has aroused a great interest in biomass resources as alternative raw materials. A kind of biomass-derived poly(butylene succinate) (PBS), has been developed as porous foams to reduce resource exhaustion and meet lightweight demands. For fire-safety in-service, graphene oxide (GO) was functionalized by 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) to combine flame-retardant elements and heat-barrier function. Hence, a very low loading level of P-containing GO as only 5 wt% could reduce peak heat release rate (pHRR) and total heat release (THR) of PBS-based foams by 58.5% and 22.3%, respectively. Meanwhile, N-/P-doped mesoporous char with a specific surface area of 136 m2/g, which derived from combustion of flame-retardant foaming PBS, contributes to a potential of energy storage applications in the capacitor or the anode of Li-ion battery with long-term stability. Overall, the sustainability of bio-based polyester could integrate lightweight of foaming, and be extended to utilization after use via facile combustion inspired by flame-retardancy design.  相似文献   
995.
Highly crosslinked ultrahigh molecular weight polyethylene (UHMWPE) stabilized by vitamin E (VE) is widely applied in artificial joints as the bearings. Despite the approval, there is a discord that VE lowers the crosslinking efficiency, limiting its use at high concentration. In this work, we aim to obtain highly crosslinked and oxidation resistant UHMWPE through the conjunction of tea polyphenol and chemical crosslinking. We hypothesized that highly incorporated tea polyphenol with multiple reactive sites can ameliorate crosslinking efficiency of chemical crosslinked UHMWPE in comparison to VE. Epigallocatechin gallate (EGCG) as representative tea polyphenol was incorporated into UHMWPE at high concentration (2–8 wt%), followed by chemical crosslinking with 2 wt% organic peroxide. Unlike VE/UHMWPE blends as the control, chemical crosslinking achieved an increasing trend in crosslink density of EGCG/UHMWPE blends with increasing antioxidant concentration. High concentration of EGCG also enhanced the oxidation stability of UHMWPE. Intriguingly, EGCG endowed UHMWPE with an excellent antimicrobial property, which was inefficient in VE/UHMWPE. Cell viability was hardly affected by the high loaded antioxidant and peroxide. The chemically crosslinked UHMWPE blended with EGCG is proved to be a reasonable, cost effective and realistic alternative for use in artificial joints.  相似文献   
996.
A series of waterborne polyurethane (PDMAPU) containing catechol group were prepared by double-bond random copolymerization of terminated double bond polyurethane prepolymer with modified acrylamido dopamine under thermal initiation. This kind of mussel-like waterborne polyurethane adhesive is inspired by marine mussel, as well as it is environment-friendly and used in bonding of leather. FTIR and 1H NMR proved the successful introduction of catechol group into polyurethane matrix. Oxidative cross-linking between catechol unit and molecular chain in PDMAPU structure, the thermal stability and crystallization ability of PDMAPU was significantly improved. The increase of the particle size of PDMAPU emulsion showed that the introduction of catechol group changed the microstructure of polyurethane and enhanced the cross-linking degree. The water resistance of polyurethane emulsion was further improved. Compared with PU without catechol group, the peel strength of leather substrate adhered by PDMAPU emulsion increased from 0.42 to 1.93 MPa, which indicated that PDMAPU has better bonding properties with leather. The bidentate hydrogen bond formed with catechol group as the reaction sites is considered to be the key reason for the adhesion of mussel-like polyurethane adhesive to hydrophilic substrates. This work provides an alternative to prepare environment-friendly high performance adhesive for hydrophilic substrates.  相似文献   
997.
超声对强化吸收制冷循环中发生器内溴化锂水溶液沸腾传热有重要意义,目前开展的相关研究较少,尤其多超声振子气泡动力学方面的理论尚未报道。为探究振子数量对溶液空化特性的影响,构建多振子气泡动力学模型,以纯水为例验证了模型准确性,探讨了不同影响因素对溶液空化特性的影响。模拟结果表明:总声强为1 W/cm2,振子数量由1增加至5时,空化气泡最大半径增加了44.12%,振子数量达到24~25个时,气泡最大半径增加率仅为1%;发生压力对空化效应的影响随着振子数量的增多而增大,单振子在吸收制冷系统的真空发生器更易产生稳态空化,而多振子更易在真空发生器内产生瞬态空化;多振子频率均匀度越小,空化强度越大,声强均匀度对空化强度的影响可忽略。  相似文献   
998.
采用双转子连续混炼挤出机与微纳层叠共挤出成型设备制备了聚丙烯/聚酰胺6/碳纳米管(PP/PA6/CNTs)复合材料和原位微纤复合膜,通过扫描电子显微镜(SEM)、流变仪、差示扫描量热仪(DSC)、万能拉伸试验机及电阻测试仪对其微观结构、流变性能、结晶性能、力学性能和导电性能进行了表征。结果表明,与共混相比,微纳层叠共挤出法使得分散相PA6/CNTs形成了微纤,微纤的形成不仅提升了复合膜的动态流变性能,并且增加了基体PP相的结晶度,提高了PA6相的结晶温度,提升了复合膜的结晶性能;当CNTs含量为0.5 %(质量分数,下同)时,复合膜的拉伸强度和断裂伸长率均达到最大值,分别为42.17 MPa和857.82 %,体积电阻率(R)下降到104 Ω·cm,综合力学性能和导电性能达到最佳。  相似文献   
999.
姚叶  陈君  程翔  杨欢红  甘林  刘飞 《变压器》2021,58(2):42-46
本文中作者提出了一种基于相变蓄热技术的高过载变压器,采用石蜡蓄热方式显著提升其抗过载发热能力,并通过试验验证了其实用价值。  相似文献   
1000.
刘梦  陆林  邱景义  陈俊红  赵鹏程 《电源技术》2021,45(11):1510-1513
氢的安全、经济和高效储运是制约燃料电池-氢能推广应用的重大障碍.金属化合物固态储氢因理论质量储氢密度高、体积占比小、储氢压力低和安全性高,是以潜艇为代表的密闭空间场合用燃料电池的首选氢源,但热力学稳定和动力学释放氢缓慢等问题限制了其性能的发挥.碳材料因强结构设计性、独特的电子性质和高导热性,在金属化合物储氢中的研究日益广泛.基于此,从纳米结构约束、催化剂和添加剂三个角度,对金属化合物储氢中碳材料的应用进行了归纳,阐述了金属化合物/碳复合材料的制备和结构以及碳发挥有益效果的作用机制.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号