首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73094篇
  免费   7774篇
  国内免费   4659篇
电工技术   6110篇
技术理论   5篇
综合类   5698篇
化学工业   9830篇
金属工艺   4546篇
机械仪表   5243篇
建筑科学   5673篇
矿业工程   2299篇
能源动力   2239篇
轻工业   5504篇
水利工程   2043篇
石油天然气   3728篇
武器工业   918篇
无线电   9045篇
一般工业技术   7240篇
冶金工业   3100篇
原子能技术   1029篇
自动化技术   11277篇
  2024年   389篇
  2023年   1160篇
  2022年   2323篇
  2021年   3227篇
  2020年   2443篇
  2019年   1917篇
  2018年   2269篇
  2017年   2545篇
  2016年   2296篇
  2015年   3385篇
  2014年   4172篇
  2013年   4812篇
  2012年   5651篇
  2011年   6101篇
  2010年   5457篇
  2009年   5093篇
  2008年   5279篇
  2007年   5088篇
  2006年   4461篇
  2005年   3599篇
  2004年   2477篇
  2003年   1923篇
  2002年   1790篇
  2001年   1534篇
  2000年   1311篇
  1999年   1047篇
  1998年   745篇
  1997年   624篇
  1996年   570篇
  1995年   454篇
  1994年   352篇
  1993年   248篇
  1992年   193篇
  1991年   142篇
  1990年   111篇
  1989年   77篇
  1988年   60篇
  1987年   46篇
  1986年   32篇
  1985年   19篇
  1984年   14篇
  1983年   12篇
  1982年   12篇
  1981年   11篇
  1980年   21篇
  1979年   13篇
  1974年   2篇
  1973年   2篇
  1959年   7篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 11 毫秒
991.
低电平扫描电流试验(LLSC)是飞机高强辐射场(HIRF)试验的一部分,其实质是在2~400 MHz 频段 内对飞机进行电磁辐照,以确定外部HIRF 环境与设备线束感应电流之间的传递函数。基于RTCA/ DO-160G 和SAE ARP5583A 标准建立HIRF 测试环境,通过对AC312E 直升机开展低电平扫描电流试验,得到了线束传递函数随频 率、天线极化方式、电磁辐照方向、线束布置的变化规律并分析了其影响机理。结果表明:发射天线以不同极化方式 辐照机体时,不同布置的线束其传递函数有一定差别;发射天线以垂直极化在0°方向辐照时,行李舱附近右发动机 控制单元(EECUR)线束的传递函数比位于驾驶舱的座舱显示器(MFD)线束的传递函数要小;发射天线以垂直极化 方式在不同方向辐照机体时,EECUR 线束在某些频段下在右侧90°方向辐照比左侧270°方向辐照的传递函数要大。 所得结论可为直升机适航符合性验证和低电平扫描电流试验的开展提供参考与支撑。  相似文献   
992.
针对新型电力系统中可中断负荷合同模型制定问题,首先基于数据挖掘理论进行用户行为特征分析,并在此基础上进行负荷响应能力分析;然后考虑负荷响应能力,从用户分类参数、电力公司成本、最大中断负荷限制3个方面改进了基于委托-代理理论的传统可中断负荷合同模型;最后结合实际数据进行算例分析,结果验证了考虑负荷响应能力的可中断负荷合同模型的有效性,有利于增强电力系统运行可靠性。  相似文献   
993.
双碳目标的提出促进了我国绿色电力的发展,也对绿色电力消纳提出了新要求。当前阶段,对于用户侧绿电消纳责任分配问题尚未形成统一政策,围绕这一问题,探讨了绿电流分析的必要性,概述了潮流分析、碳流分析、绿电流分析3者的侧重点和对应关系。结合电力系统潮流计算,提出了电力系统绿电流分析理论的基本概念和重要结论,初步形成了绿电流分析的计算方法。通过IEEE 14节点母线系统对所提方法进行验证,分析了不同情况下系统各节点绿电流的分布特点。最后对绿电消纳责任划分、单一机组的绿电流向追踪等应用方向进行了展望。  相似文献   
994.
光伏、风电等新能源发电大规模接入电网逐步替代传统同步机,导致电网惯量和阻尼水平不断下降,威胁电网安全稳定运行。针对上述问题,提出了一种基于超级电容的新能源惯量阻尼电抗综合模拟控制(composite inertia-damping-impedance emulation control, IDIE)方案。通过联立同步机转子运动方程和超级电容功率动态方程,并结合同步机功率传输方程,设计了通过控制超级电容有功功率以综合模拟同步机旋转质量、阻尼绕组和绕组电抗三者物理特性的核心算法。并利用小信号稳定性分析对方案关键参数进行优化。最后,基于控制器硬件在环试验在各种暂态工况下对IDIE方案进行了评估。结果表明,IDIE方案在灵活模拟同步机惯量的同时,可通过配置优化模拟阻尼和模拟电抗,保障频率稳定性,支撑电网动态运行。  相似文献   
995.
Aqueous rechargeable zinc batteries (ARZBs) are recently prevailing devices that utilize the abundant Zn resources and the merits of aqueous electrolytes to become a competitive alternative for large-scale energy storage. Benefiting from the unique inductive effect and flexible structure, the past five years have experienced a diversiform of phosphate-based polyanion materials that are used as cathodes in ARZBs. In this review, the most recent advances in the Zn2+ storage mechanisms and electrolyte optimization of the phosphate-based cathodes of ARZBs, which mainly focus on vanadium/iron-based phosphates and their derivatives are presented. Furthermore, in addition to significant progress on polyanion phosphate-based cathode materials, the design strategies both for electrode materials and compatible electrolytes are also elaborated to improve the energy density and extend the cycling life of aqueous Zn/polyanion batteries.  相似文献   
996.
Aqueous Zn ion batteries (ZIBs) are one of the most promising battery chemistries for grid-scale renewable energy storage. However, their application is limited by issues such as Zn dendrite formation and undesirable side reactions that can occur in the presence of excess free water molecules and ions. In this study, a nanocellulose-carboxymethylcellulose (CMC) hydrogel electrolyte is demonstrated that features stable cycling performance and high Zn2+ conductivity (26 mS cm−1), which is attributed to the material's strong mechanical strength (≈70 MPa) and water-bonding ability. With this electrolyte, the Zn-metal anode shows exceptional cycling stability at an ultra-high rate, with the ability to sustain a current density as high as 80 mA cm−2 for more than 3500 cycles and a cumulative capacity of 17.6 Ah cm−2 (40 mA cm−2). Additionally, side reactions, such as hydrogen evolution and surface passivation, are substantially reduced due to the strong water-bonding capacity of the CMC. Full Zn||MnO2 batteries fabricated with this electrolyte demonstrate excellent high-rate performance and long-term cycling stability (>500 cycles at 8C). These results suggest the cellulose-CMC electrolyte as a promising low-cost, easy-to-fabricate, and sustainable aqueous-based electrolyte for ZIBs with excellent electrochemical performance that can help pave the way toward grid-scale energy storage for renewable energy sources.  相似文献   
997.
Inorganic/organic dielectric composites are very attractive for high energy density electrostatic capacitors. Usually, linear dielectric and ferroelectric materials are chosen as inorganic fillers to improve energy storage performance. Antiferroelectric (AFE) materials, especially single-crystalline AFE oxides, have relatively high efficiency and higher density than linear dielectrics or ferroelectrics. However, adding single-crystalline AFE oxides into polymers to construct composite with improved energy storage performance remains elusive. In this study, high-quality freestanding single-crystalline PbZrO3 membranes are obtained by a water-soluble sacrificial layer method. They exhibit classic AFE behavior and then 2D–2D type PbZrO3/PVDF composites with the different film thicknesses of PbZrO3 (0.1-0.4 µm) is constructed. Their dielectric properties and polarization response improve significantly as compared to pure PVDF and are optimized in the PbZrO3(0.3 µm)/PVDF composite. Consequently, a record-high energy density of 43.3 J cm−3 is achieved at a large breakdown strength of 750 MV m−1. Phase-field simulation indicates that inserting PbZrO3 membranes effectively reduces the breakdown path. Single-crystalline AFE oxide membranes will be useful fillers for composite-based high-power capacitors.  相似文献   
998.
Despite the outstanding power conversion efficiency (PCE) of perovskite solar cells (PSCs) achieved over the years, unsatisfactory stability and lead toxicity remain obstacles that limit their competitiveness and large-scale practical deployment. In this study, in situ polymerizing internal encapsulation (IPIE) is developed as a holistic approach to overcome these challenges. The uniform polymer internal package layer constructed by thermally triggered cross-linkable monomers not only solidifies the ionic perovskite crystalline by strong electron-withdrawing/donating chemical sites, but also acts as a water penetration and ion migration barrier to prolong shelf life under harsh environments. The optimized MAPbI3 and FAPbI3 devices with IPIE treatment yield impressive efficiencies of 22.29% and 24.12%, respectively, accompanied by remarkably enhanced environmental and mechanical stabilities. In addition, toxic water-soluble lead leakage is minimized by the synergetic effect of the physical encapsulation wall and chemical chelation conferred by the IPIE. Hence, this strategy provides a feasible route for preparing efficient, stable, and eco-friendly PSCs.  相似文献   
999.
Polydimethylsiloxanes (PDMS) foam as one of next-generation polymer foam materials shows poor surface adhesion and limited functionality, which greatly restricts its potential applications. Fabrication of advanced PDMS foam materials with multiple functionalities remains a critical challenge. In this study, unprecedented self-adhesive PDMS foam materials are reported with worm-like rough structure and reactive groups for fabricating multifunctional PDMS foam nanocomposites decorated with MXene/cellulose nanofiber (MXene/CNF) interconnected network by a facile silicone foaming and dip-coating strategy followed by silane surface modification. Interestingly, such self-adhesive PDMS foam produces strong interfacial adhesion with the hybrid MXene/CNF nano-coatings. Consequently, the optimized PDMS foam nanocomposites have excellent surface super-hydrophobicity (water contact angle of ≈159o), tunable electrical conductivity (from 10−8 to 10 S m−1), stable compressive cyclic reliability in both wide-temperature range (from −20 to 200 oC) and complex environments (acid, sodium, and alkali conditions), outstanding flame resistance (LOI value of >27% and low smoke production rate), good thermal insulating performance and reliable strain sensing in various stress modes and complex environmental conditions. It provides a new route for the rational design and development of advanced PDMS foam nanocomposites with versatile multifunctionalities for various promising applications such as intelligent healthcare monitoring and fire-safe thermal insulation.  相似文献   
1000.
Developing new polymerized small molecular acceptor (PSMA) is pivotal for improving the performance of all-polymer solar cells. On the basis of this newly developed CH-series small molecule acceptors, two PSMAs are reported herein (namely PZC16 and PZC17, respectively). To reduce the molecular torsion caused by the traditional aromatic π-bridges, non-aromatic conjugated units (ethynyl for PZC16 and vinylene for PZC17) are adopted as the linkers and their effect on the photo-physical properties as well as the device performance are systematically investigated. Both polymer acceptors exhibit co-planar molecular conformation, along with broad absorption ranges and suitable energy levels. In comparison with the PM6:PZC16 film, the PM6:PZC17 film exhibits more uniform phase separation in morphology with a distinct bi-continuous network and better crystallinity. The PM6:PZC17-binary-based devices exhibit a satisfactory PCE of 16.33%, significantly higher than 9.22% of the PZC16-based devices. Impressively, PM6:PZC17-based large area device (ca. 1 cm2) achieves an excellent PCE of 15.14%, which is among the top performance for reported all-polymer solar cells (all-PSCs).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号