首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52247篇
  免费   5430篇
  国内免费   2799篇
电工技术   3719篇
技术理论   3篇
综合类   4170篇
化学工业   8237篇
金属工艺   3087篇
机械仪表   3358篇
建筑科学   4069篇
矿业工程   1533篇
能源动力   1400篇
轻工业   4413篇
水利工程   1020篇
石油天然气   2821篇
武器工业   553篇
无线电   6257篇
一般工业技术   5598篇
冶金工业   2218篇
原子能技术   862篇
自动化技术   7158篇
  2024年   298篇
  2023年   1022篇
  2022年   2030篇
  2021年   2618篇
  2020年   1999篇
  2019年   1618篇
  2018年   1789篇
  2017年   1948篇
  2016年   1681篇
  2015年   2273篇
  2014年   2851篇
  2013年   3140篇
  2012年   3604篇
  2011年   3660篇
  2010年   3387篇
  2009年   3205篇
  2008年   3148篇
  2007年   2959篇
  2006年   2920篇
  2005年   2457篇
  2004年   1654篇
  2003年   1505篇
  2002年   1591篇
  2001年   1405篇
  2000年   1132篇
  1999年   971篇
  1998年   624篇
  1997年   592篇
  1996年   528篇
  1995年   377篇
  1994年   355篇
  1993年   248篇
  1992年   240篇
  1991年   147篇
  1990年   105篇
  1989年   94篇
  1988年   81篇
  1987年   53篇
  1986年   47篇
  1985年   20篇
  1984年   20篇
  1983年   26篇
  1982年   16篇
  1981年   11篇
  1980年   15篇
  1979年   4篇
  1959年   6篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The pursuit for efficient deep blue material is an ever-increasing issue in organic optoelectronics field. It is a long-standing challenge to achieve high external quantum efficiency (EQE) exceed 10% at brightness of 1000 cd m−2 with a Commission International de L'Eclairage (CIEy) <0.08 in non-doped organic light-emitting diodes (OLEDs). Herein, this study reports a deep blue luminogen, PPITPh, by bonding phenanthro[9,10-d]imidazole moiety with m-terphenyl group via benzene bridge. The non-doped OLED based on PPITPh exhibits an exceptionally high EQE of 11.83% with a CIE coordinate of (0.15, 0.07). The EQE still maintains 10.17% at the brightness of 1000 cd m−2, and even at a brightness as high as 10000 cd m−2, an EQE of 7.5% is still remained, representing the record-high result among non-doped deep-blue OLEDs at 1000 cd m−2. The unprecedented device performance is attributed to the reversed intersystem crossing process through hot exciton mechanism. Besides, the maximum EQE of orange phosphorescent OLED with PPITPh as host is 32.02%, and remains 31.17% at the brightness of 1000 cd m−2. Such minimal efficiency roll-off demonstrates that PPITPh is also an excellent phosphorescent host material. The result offers a new design strategy for the enrichment of high-efficiency deep blue luminogen.  相似文献   
992.
The desirable implantable neural interfaces can accurately record bioelectrical signals from neurons and regulate neural activities with high spatial/time resolution, facilitating the understanding of neuronal functions and dynamics. However, the electrochemical performance (impedance, charge storage/injection capacity) is limited with the miniaturization and integration of neural electrodes. The “crosstalk” caused by the uneven distribution of elctric field leads to lower electrical stimulation/recording efficiency. The mismatch between stiff electrodes and soft tissues exacerbates the inflammatory responses, thus weakening the transmission of signals. Though remarkable breakthroughs have been made through the incorporation of optimizing electrode design and functionalized nanomaterials, the chronic stability, and long-term activity in vivo of the neural electrodes still need further development. In this review, the neural interface challenges mainly on electrochemistry and biology are discussed, followed by summarizing typical electrode optimization technologies and exploring recent advances in the application of nanomaterials, based on traditional metallic materials, emerging 2D materials, conducting polymer hydrogels, etc., for enhancing neural interfaces. The strategies for improving the durability including enhanced adhesion and minimized inflammatory response, are also summarized. The promising directions are finally presented to provide enlightenment for high-performance neural interfaces in future, which will promote profound progress in neuroscience research.  相似文献   
993.
Developing low-cost and high-efficient bifunctional catalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is greatly significant for water electrolysis. Here, Ni3N-CeO2/NF heterostructure is synthesized on the nickel foam, and it exhibits excellent HER and OER performance. As a result, the water electrolyzer based on Ni3N-CeO2/NF bifunctional catalyst only needs 1.515 V@10 mA cm−2, significantly better than that of Pt/C||IrO2 catalysts. In situ characterizations unveil that CeO2 plays completely different roles in HER and OER processes. In situ infrared spectroscopy and density functional theory calculations indicate that the introduction of CeO2 can optimizes the structure of interface water, and the synergistic effect of Ni3N and CeO2 improve the HER activity significantly, while the in situ Raman spectra reveal that CeO2 accelerates the reconstruction of OV (oxygen vacancy)-rich NiOOH for boosting OER. This study clearly unlocks the different catalytic mechanisms of CeO2 for boosting the HER and OER activity of Ni3N for water splitting, which provides the useful guidance for designing the high-performance bifunctional catalysts for water splitting.  相似文献   
994.
谢柏林  黎琦  魏娜  邝建 《计算机工程》2023,49(1):279-286+294
社交网络已成为人们获取和发布信息的一个重要平台,也是黑客发起网络诈骗的主要场地。大多数黑客在发起网络诈骗之前,首先会判别目标用户的主要人格特点,然后根据主要人格特点制定与其接触的策略。因此,面向社交网络用户的人格特质识别方法的研究对提高用户识别社交网络诈骗能力具有重要意义。提出基于用户的人格特质识别方法。通过构建面向社交网络的人格特质词典提取用户发表或转发文本信息中能反映用户主要人格特质类型的观测值,采用5个具有不同参数值的隐半马尔可夫模型刻画用户在社交网络上发表或转发文本信息的行为过程。在人格特质识别阶段,通过计算每个用户在发表或转发文本信息过程中产生的观测序列相对于模型的平均对数似然概率,以识别用户所属的人格特质类型。在采集的新浪微博数据集上进行实验,结果表明,当假正率为10%时,该方法的总真正率为93.18%,能准确识别用户的人格特质类型。  相似文献   
995.
Temperature variation-induced thermoelectric catalytic efficiency of thermoelectric material is simultaneously restricted by its electrical conductivity, Seebeck coefficient, and thermal conductivity. Herein, Bi2Te3 nanosheets are in situ grown on reduced graphene oxides (rGO) to generate an efficient photo-thermoelectric catalyst (rGO-Bi2Te3). This system exhibits phonon scattering effect and extra carrier transport channels induced by the formed heterointerface between rGO and Bi2Te3, which improves the power factor value and reduces thermal conductivity, thus enhancing the thermoelectric performance of 2.13 times than single Bi2Te3. The photo-thermoelectric catalysis of rGO-Bi2Te3 significantly improves the reactive oxygen species yields, resulting from the effective electron–hole separation caused by the unique thermoelectric field and heterointerfaces of rGO-Bi2Te3. Correspondingly, the electrospinning membranes containing rGO-Bi2Te3 nanosheets exhibit high antibacterial efficiency in vivo (99.35 ± 0.29%), accelerated tissue repair ability, and excellent biosafety. This study provides an insight into heterointerface design in photo-thermoelectric catalysis.  相似文献   
996.
High-voltage lithium metal batteries (LMBs) are capable to achieve the increasing energy density. However, their cycling life is seriously affected by unstable electrolyte/electrode interfaces and capacity instability at high voltage. Herein, a hydrofluoric acid (HF)-removable additive is proposed to optimize electrode electrolyte interphases for addressing the above issues. N, N-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) aniline (DMPATMB) is used as the electrolyte additive to induce PF6 decomposition to form a dense and robust LiF-rich solid electrolyte interphase (SEI) for suppressing Li dendrite growth. Moreover, DMPATMB can help to form highly Li+ conductive Li3N and LiBO2, which can boost the Li+ transport across SEI and cathode electrolyte interphase (CEI). In addition, DMPATMB can scavenge traced HF in the electrolyte to protect both SEI and CEI from the corrosion. As expected, 4.5 V Li|| LiNi0.6Co0.2Mn0.2O2 batteries with such electrolyte deliver 145 mAh g−1 after 140 cycles at 200 mA g−1. This work provides a novel insight into high-voltage electrolyte additives for LMBs.  相似文献   
997.
Polymer blends based solid polymer electrolytes (SPEs), combining the advantages of multiple polymers, are promising for the utilization of 5 V-class cathodes (e.g., LiCoMnO4 (LCMO)) with enhanced safety. However, severe macro-phase separation with defects and voids in polymer blends restrict the electrochemical stability and ionic migration of SPEs. Herein, inorganic compatibilizer polyacrylonitrile grafted MXene (MXene-g-PAN) is exploited to improve the miscibility of the poly(vinylidene fluoride-co-hexafluoropropylene) (PVHF)/PAN blends and suppress the consolidation of phase particles. The resulting SPE exhibits a high anodic stability with an ionic conductivity of 2.17 × 10−4 S cm−1, enabling a stable and reversible Li platting/stripping (over 2500 h). The fabricated solid Li‖LCMO cell delivers a 5.1 V discharge voltage with a decent capacity (131 mAh g−1) and cycling performance. Subsequently, the solid all-in-one graphite‖LCMO battery is also constructed to extend the application of MXene based SPEs in flexible batteries. Benefiting from the interface-less design, outstanding mechanical flexibility and stability is achieved in the battery, which can endure various deformations with a low-capacity loss (< ≈10%). This study signifies a significant development on solid flexible lithium ion batteries with enhanced performance, stability, and reliability by investigating the miscibility of polymer blends, benefiting for the design of high-performance SPEs.  相似文献   
998.
Quasi-two-dimensional (Q-2D) perovskites are emerging as one of the most promising materials for photodetectors. However, a significant challenge to Q-2D perovskites for photodetection is their insufficient charge transport ability, which is mainly attributed to their hybrid low-dimensional n-phase structure. This study demonstrates that evenly-distributed 3D-like phases with vertical orientation throughout the film can greatly facilitate charge transport and suppress charge recombination, outperforming the prevalent phase structure with a vertical dimension gradient. Based on such a phase structure, a Q-2D Ruddlesden−Popper perovskite self-powered photodetector achieving a combination of exceptional figures-of-merit is realized, including a responsivity of 0.45 AW−1, a peak specific detectivity of 2.3 × 1013 Jones, a 156 dB linear dynamic range, and a rise/fall time of 2.89 µs/1.93 µs. The desired phase structure is obtained by utilizing a double-hole transport layer (HTL), combining hydrophobic PTAA and hydrophilic PEDOT: PSS. Besides, the dependence of the hybrid low-dimensional phase structure is also identified on the surface energy of the buried HTL substrate. This study gives insight into the correlation between Q-2D perovskites’ phase structure and performance, providing a valuable design guide for Q-2D perovskite-based photodetectors.  相似文献   
999.
Due to the low cost and excellent potential for mass production, printable mesoscopic perovskite solar cells (p-MPSCs) have drawn a lot of attention among other device structures. However, the low open-circuit voltage (VOC) of such devices restricts their power conversion efficiency (PCE). This limitation is brought by the high defect density at perovskite grain boundaries in the mesoporous scaffold, which results in severe nonradiative recombination and is detrimental to the VOC. To improve the perovskite crystallization process, passivate the perovskite defects, and enhance the PCE, additive engineering is an effective way. Herein, a polymeric Lewis base polysuccinimide (PSI) is added to the perovskite precursor solution as an additive. It improves the perovskite crystallinity and its carbonyl groups strongly coordinate with Pb2+, which can effectively passivate defects. Additionally, compared with its monomer, succinimide (SI), PSI serves as a better defect passivator because the long-chained macromolecule can be firmly anchored on those defect sites and form a stronger interaction with perovskite grains. As a result, the champion device has a PCE of 18.84%, and the VOC rises from 973 to 1030 mV. This study offers a new strategy for fabricating efficient p-MPSCs.  相似文献   
1000.
Tailoring inorganic components of cathode electrolyte interphase (CEI) and solid electrolyte interphase (SEI) is critical to improving the cycling performance of lithium metal batteries. However, it is challenging due to complicated electrolyte reactions on cathode/anode surfaces. Herein, the species and inorganic component content of the CEI/SEI is enriched with an objectively gradient distribution through employing pentafluorophenyl 4-nitrobenzenesulfonate (PFBNBS) as electrolyte additive guided by engineering bond order with functional groups. In addition, a catalytic effect of LiNi0.6Mn0.2Co0.2O2 (NCM622) cathode is proposed on the decomposition of PFBNBS. PFBNBS with lower highest occupied molecular orbital can be preferentially oxidized on the NCM622 surface with the help of the catalytic effect to induce an inorganic-rich CEI for superior electrochemical performance at high voltage. Moreover, PFBNBS can be reduced on the Li surface due to its lower lowest unoccupied molecular orbital , increasing inorganic moieties in SEI for inhibiting Li dendrite generation. Thus, 4.5 V Li||NCM622 batteries with such electrolyte can retain 70.4% of initial capacity after 500 cycles at 0.2 C, which is attributed to the protective effect of the excellent CEI on NCM622 and the inhibitory effect of its derived CEI/SEI on continuous electrolyte decomposition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号