首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53735篇
  免费   4366篇
  国内免费   2002篇
电工技术   2792篇
技术理论   5篇
综合类   2994篇
化学工业   9367篇
金属工艺   3230篇
机械仪表   3234篇
建筑科学   3811篇
矿业工程   1756篇
能源动力   1691篇
轻工业   3777篇
水利工程   868篇
石油天然气   3781篇
武器工业   397篇
无线电   5824篇
一般工业技术   6466篇
冶金工业   3031篇
原子能技术   657篇
自动化技术   6422篇
  2024年   245篇
  2023年   895篇
  2022年   1629篇
  2021年   2312篇
  2020年   1687篇
  2019年   1465篇
  2018年   1669篇
  2017年   1795篇
  2016年   1609篇
  2015年   2104篇
  2014年   2703篇
  2013年   3121篇
  2012年   3310篇
  2011年   3618篇
  2010年   3205篇
  2009年   2876篇
  2008年   2822篇
  2007年   2742篇
  2006年   2894篇
  2005年   2473篇
  2004年   1550篇
  2003年   1354篇
  2002年   1278篇
  2001年   1006篇
  2000年   1202篇
  1999年   1483篇
  1998年   1185篇
  1997年   1012篇
  1996年   1012篇
  1995年   892篇
  1994年   705篇
  1993年   467篇
  1992年   371篇
  1991年   299篇
  1990年   241篇
  1989年   197篇
  1988年   176篇
  1987年   111篇
  1986年   95篇
  1985年   63篇
  1984年   56篇
  1983年   39篇
  1982年   32篇
  1981年   30篇
  1980年   17篇
  1979年   7篇
  1978年   7篇
  1977年   10篇
  1976年   14篇
  1975年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Polymer blends based solid polymer electrolytes (SPEs), combining the advantages of multiple polymers, are promising for the utilization of 5 V-class cathodes (e.g., LiCoMnO4 (LCMO)) with enhanced safety. However, severe macro-phase separation with defects and voids in polymer blends restrict the electrochemical stability and ionic migration of SPEs. Herein, inorganic compatibilizer polyacrylonitrile grafted MXene (MXene-g-PAN) is exploited to improve the miscibility of the poly(vinylidene fluoride-co-hexafluoropropylene) (PVHF)/PAN blends and suppress the consolidation of phase particles. The resulting SPE exhibits a high anodic stability with an ionic conductivity of 2.17 × 10−4 S cm−1, enabling a stable and reversible Li platting/stripping (over 2500 h). The fabricated solid Li‖LCMO cell delivers a 5.1 V discharge voltage with a decent capacity (131 mAh g−1) and cycling performance. Subsequently, the solid all-in-one graphite‖LCMO battery is also constructed to extend the application of MXene based SPEs in flexible batteries. Benefiting from the interface-less design, outstanding mechanical flexibility and stability is achieved in the battery, which can endure various deformations with a low-capacity loss (< ≈10%). This study signifies a significant development on solid flexible lithium ion batteries with enhanced performance, stability, and reliability by investigating the miscibility of polymer blends, benefiting for the design of high-performance SPEs.  相似文献   
992.
Cobalt phthalocyanine (CoPc) anchored on heterogeneous scaffold has drawn great attention as promising electrocatalyst for carbon dioxide reduction reaction (CO2RR), but the molecule/substrate interaction is still pending for clarification and optimization to maximize the reaction kinetics. Herein, a CO2RR catalyst is fabricated by affixing CoPc onto the Mg(OH)2 substrate primed with conductive carbon, demonstrating an ultra-low overpotential of 0.31 ± 0.03 V at 100 mA cm−2 and high faradaic efficiency of >95% at a wide current density range for CO production, as well as a heavy-duty operation at 100 mA cm−2 for more than 50 h in a membrane electrode assembly. Mechanistic investigations employing in situ Raman and attenuated total reflection surface-enhanced infrared absorption spectroscopy unravel that Mg(OH)2 plays a pivotal role to enhance the CO2RR kinetics by facilitating the first-step electron transfer to form anionic *CO2 intermediates. DFT calculations further elucidate that introducing Lewis acid sites help to polarize CO2 molecules absorbed at the metal centers of CoPc and consequently lower the activation barrier. This work signifies the tailoring of catalyst-support interface at molecular level for enhancing the turnover rate of CO2RR.  相似文献   
993.
Current catheter devices in minimally invasive surgery still possess limited functional options, lacking multimodal integration of both sensing and therapy. Catheter devices usually operate outside the tissue, incapable to detect intra-tissue biochemical information for accurate localization and assessment of lesions during surgery. Inspired by the feature and functions of Petromyzontidae, here a multimodal core-shell microneedles-integrated bioelectronic catheter (MNIBC) for tissue-penetrating theranostics in endoscopic surgery is developed. The microneedle (MN) device possesses individually addressable functionality at single-MN tip resolution, enabling multiplex functions (a total of 11 functions distributed in three types of catheters) including biochemical sensing, myoelectric modulation, electroporation, and drug delivery in a submucosal environment. The MNIBC is prepared through hybrid fabrication and dimensionality reduction strategies, where the MN electrodes are functionalized with an MXene-carbon nanotube (MXene-CNT)-based electron mediator, addressing the challenge of reduced electrode sensitivity on ultra-small MN tip. The functionalities of MNIBC are demonstrated both ex vivo and in vivo on anesthetized rabbits via laparoscopy, simulated cystoscopy, and laparotomy. The MNIBC can effectively detect intra-tissue biochemical signals in the bladder, and offers localized electroporation and intra-tissue drug delivery for precise treatments of lesions. The versatile features of the MNIBC present a highly advanced platform for precise surgeries.  相似文献   
994.
Treating bacterial biofilm infections on implanted materials remains challenging in clinical practice, as bacteria can be resistant by weakening the host defense from immune cells like macrophages. Herein, a metal-piezoelectric hetero-nanostructure with mechanical energy-driven antimicrobial property is in situ constructed on the Ti implant. Under ultrasonic irradiation, the formed piezotronic Ti (piezoTi) can promote the generation of reactive oxygen species (ROS) by facilitating local charge transfer at the surface, thus leading to piezodynamic killing of Staphylococcus aureus (S. aureus) while downregulating biofilm-forming genes. In addition, the stimulated macrophages on piezoTi display potent phagocytosis and anti-bacterial activity through the activation of PI3K-AKT and MAPK pathway. As a demonstration, one-time ultrasound irradiation of piezoTi pillar implanted in an osteomyelitis model efficiently eliminates the S. aureus biofilm infection and rescues the implant with enhanced osteointegration. By the synergistic effect of ultrasound-driven piezodynamic therapy and immuno-regulation, the proposed piezoelectric nanostructured surface can endow Ti implants with highly efficient antibacterial performance in an antibiotic-free, noninvasive, and on-demand manner.  相似文献   
995.
Organic solar cells (OSCs) have achieved much progress with rapidly increasing power conversion efficiencies (PCEs). It should be noted that the top-performance OSCs are generally consisted of active materials with complex chemical structures, resulting in high costs. Here, combining the material design and morphology control, high-efficiency OSCs are fabricated by a low-cost donor: acceptor blend. A completely non-fused electron acceptor named Tz is designed and synthesized via introducing thiazole units on both sides of a bithiophene core, which shows an outstanding PCE of 13.3% with a typical polythiophene donor. More importantly, optimization guidelines are presented to get excellent morphology for low-cost donor:acceptor systems. Three polythiophenes are selected, poly(3-hexylthiophene) and its two derivatives with electron-withdrawing substitutions (PDCBT and PDCBT-2F), as donors to fabricate the cell devices. The computational and experimental data reveal that decreasing the electrostatic interaction between polythiophene and Tz is the key to getting a suppressed miscibility and thus a high phase purity. This study provides insight into the molecular design and donor:acceptor matching requirements for high-efficiency and low-cost OSCs.  相似文献   
996.
Due to the low cost and excellent potential for mass production, printable mesoscopic perovskite solar cells (p-MPSCs) have drawn a lot of attention among other device structures. However, the low open-circuit voltage (VOC) of such devices restricts their power conversion efficiency (PCE). This limitation is brought by the high defect density at perovskite grain boundaries in the mesoporous scaffold, which results in severe nonradiative recombination and is detrimental to the VOC. To improve the perovskite crystallization process, passivate the perovskite defects, and enhance the PCE, additive engineering is an effective way. Herein, a polymeric Lewis base polysuccinimide (PSI) is added to the perovskite precursor solution as an additive. It improves the perovskite crystallinity and its carbonyl groups strongly coordinate with Pb2+, which can effectively passivate defects. Additionally, compared with its monomer, succinimide (SI), PSI serves as a better defect passivator because the long-chained macromolecule can be firmly anchored on those defect sites and form a stronger interaction with perovskite grains. As a result, the champion device has a PCE of 18.84%, and the VOC rises from 973 to 1030 mV. This study offers a new strategy for fabricating efficient p-MPSCs.  相似文献   
997.
Potassium-ion batteries have emerged not only as low-cost alternatives to lithium-ion batteries, but also as high-voltage energy storage systems. However, their development is still encumbered by the scarcity of high-performance electrode materials that can endure successive potassium-ion uptake. Herein, a hydrated Bi-Ti bimetallic ethylene glycol (H-Bi-Ti-EG) compound is reported as a new high-capacity and stable anode material for potassium storage. H-Bi-Ti-EG possesses a long-range disordered layered framework, which helps to facilitate electrolyte ingress into the entire Bi nanoparticles. A suite of spectroscopic analyses reveals the in situ formation Bi nanoparticles within the organic polymer matrix, which can alleviate stresses caused by the huge volume expansion/contraction during deep cycles, thereby maintaining the superior structural integrity of H-Bi-Ti-EG organic anode. As expected, H-Bi-Ti-EG anode exhibits a high capacity and superior long-term cycling stability. Importantly for potassium storage, it can be cycled at current densities of 0.1, 0.5, 1, and 2 Ag−1 for 800, 700, 1000, and even 6000 cycles, retaining charging capacities of 361, 206, 185, and 85.8 mAh g−1, respectively. The scalable synthetic method along with the outstanding electrochemical performance of hydrated Bi-Ti-EG, which is superior to other reported Bi-based anode materials, places it as a promising anode material for high-performance potassium storage.  相似文献   
998.
Photonic spin-orbit interactions describe the interactions between spin angular momentum and orbital angular momentum of photons, which play essential roles in subwavelength optics. However, the influence of frequency dispersion on photonic angular-momentum coupling is rarely studied. Here, by elaborately designing the contribution of the geometric phase and waveguide propagation phase, the dispersion-enabled symmetry switching of photonic angular-momentum coupling is experimentally demonstrated. This notion may induce many exotic phenomena and be found in enormous applications, such as the spin-Hall effect, optical calculation, and wavelength division multiplexing systems. As a proof-of-concept demonstration, two metadevices, a multi-channel vectorial vortex beam generator and a phase-only hologram, are applied to experimentally display optical double convolution, which may offer additional degrees of freedom to accelerate computing and a miniaturization configuration for optical convolution without collimation operation. These results may provide a new opportunity for complex vector optical field manipulation and calculation, optical information coding, light-matter interaction manipulation, and optical communication.  相似文献   
999.
Tailoring inorganic components of cathode electrolyte interphase (CEI) and solid electrolyte interphase (SEI) is critical to improving the cycling performance of lithium metal batteries. However, it is challenging due to complicated electrolyte reactions on cathode/anode surfaces. Herein, the species and inorganic component content of the CEI/SEI is enriched with an objectively gradient distribution through employing pentafluorophenyl 4-nitrobenzenesulfonate (PFBNBS) as electrolyte additive guided by engineering bond order with functional groups. In addition, a catalytic effect of LiNi0.6Mn0.2Co0.2O2 (NCM622) cathode is proposed on the decomposition of PFBNBS. PFBNBS with lower highest occupied molecular orbital can be preferentially oxidized on the NCM622 surface with the help of the catalytic effect to induce an inorganic-rich CEI for superior electrochemical performance at high voltage. Moreover, PFBNBS can be reduced on the Li surface due to its lower lowest unoccupied molecular orbital , increasing inorganic moieties in SEI for inhibiting Li dendrite generation. Thus, 4.5 V Li||NCM622 batteries with such electrolyte can retain 70.4% of initial capacity after 500 cycles at 0.2 C, which is attributed to the protective effect of the excellent CEI on NCM622 and the inhibitory effect of its derived CEI/SEI on continuous electrolyte decomposition.  相似文献   
1000.
Due to the complex spatial-temporal pathophysiology of spinal cord injury (SCI), effective modulation of SCI-specific inflammatory pathogenesis to achieve desirable therapeutic effects on functional recovery still remains challenging. Herein, cell-enhanced photocrosslinked silk fibroin hydrogels with extracellular matrix-mimicking cues of mechanical properties and RGD (Arg-Gly-Asp) signals are gelled in situ to fill the lesion site to modulate injury-induced neuroinflammation and promote neurite regrowth after SCI. The bionic hydrogel system provides biomimetic mechanical cues to promote neuronal differentiation of neural stem/progenitor cells (NPCs) and neurite growth by activating YAP nuclear expression. Importantly, favored by the strong capacity of silk fibroin hydrogels on macrophage/microglia recruitment, NPCs encapsulated hydrogel (NPCs@SFRGD0.1) effectively promotes recruited macrophages/microglia to M2 polarization in the lesion site by releasing S100A4 and thereby remodels the inflammatory microenvironment after SCI. Moreover, NPCs@SFRGD0.1 successfully reduces glial scar formation and accelerates corticospinal tract axon regrowth to improve locomotor recovery. Overall, this work contributes to illustrating the therapeutic mechanism of NPCs development based biomaterial therapies on modulating inflammatory microenvironment and this NPCs enhanced silk fibroin hydrogel provides a promising therapeutic strategy for SCI.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号