Weather is a key factor affecting the control of air traffic. Accurate recognition and classification of similar weather scenes in the terminal area is helpful for rapid decision-making in air traffic flow management. Current researches mostly use traditional machine learning methods to extract features of weather scenes, and clustering algorithms to divide similar scenes. Inspired by the excellent performance of deep learning in image recognition, this paper proposes a terminal area similar weather scene classification method based on improved deep convolution embedded clustering (IDCEC), which uses the combination of the encoding layer and the decoding layer to reduce the dimensionality of the weather image, retaining useful information to the greatest extent, and then uses the combination of the pre-trained encoding layer and the clustering layer to train the clustering model of the similar scenes in the terminal area. Finally, terminal area of Guangzhou Airport is selected as the research object, the method proposed in this article is used to classify historical weather data in similar scenes, and the performance is compared with other state-of-the-art methods. The experimental results show that the proposed IDCEC method can identify similar scenes more accurately based on the spatial distribution characteristics and severity of weather; at the same time, compared with the actual flight volume in the Guangzhou terminal area, IDCEC's recognition results of similar weather scenes are consistent with the recognition of experts in the field. 相似文献
Two-stage stochastic linear complementarity problems (TSLCP) model a large class of equilibrium problems subject to data uncertainty, and are closely related to two-stage stochastic optimization problems. The sample average approximation (SAA) method is one of the basic approaches for solving TSLCP and the consistency of the SAA solutions has been well studied. This paper focuses on building confidence regions of the solution to TSLCP when SAA is implemented. We first establish the error-bound condition of TSLCP and then build the asymptotic and nonasymptotic confidence regions of the solutions to TSLCP by error-bound approach, which is to combine the error-bound condition with central limit theory, empirical likelihood theory, and large deviation theory. 相似文献
Neural Computing and Applications - Existing data race detection approaches based on deep learning are suffering from the problems of unique feature extraction and low accuracy. To this end, this... 相似文献
Neural Computing and Applications - Considering the accuracy, generalization ability, stability, and training efficiency of a furnace temperature model in the process of municipal solid waste... 相似文献
The homogeneous incorporation of heteroatoms into two-dimensional C nanostructures, which leads to an increased chemical reactivity and electrical conductivity as well as enhanced synergistic catalysis as a conductive matrix to disperse and encapsulate active nanocatalysts, is highly attractive and quite challenging. In this study, by using the natural and cheap hydrotropic amino acid proline—which has remarkably high solubility in water and a desirable N content of ~12.2 wt.%—as a C precursor pyrolyzed in the presence of a cubic KCl template, we developed a facile protocol for the large-scale production of N-doped C nanosheets with a hierarchically porous structure in a homogeneous dispersion. With concomitantly encapsulated and evenly spread Fe2O3 nanoparticles surrounded by two protective ultrathin layers of inner Fe3C and outer onion-like C, the resulting N-doped graphitic C nanosheet hybrids (Fe2O3@Fe3C-NGCNs) exhibited a very high Li-storage capacity and excellent rate capability with a reliable and prolonged cycle life. A reversible capacity as high as 857 mAh•g–1 at a current density of 100 mA•g–1 was observed even after 100 cycles. The capacity retention at a current density 10 times higher—1,000 mA•g–1—reached 680 mAh•g–1, which is 79% of that at 100 mA•g–1, indicating that the hybrids are promising as anodes for advanced Li-ion batteries. The results highlight the importance of the heteroatomic dopant modification of the NGCNs host with tailored electronic and crystalline structures for competitive Li-storage features.