In order to avoid the overflow problem of network flow table caused by hackers attacking the network in the process of using the network, a method for overflow attack defense of SDN network flow table based on stochastic differential equation is proposed. In this method, the stochastic differential equation is first proposed, and the drift coefficient and diffusion coefficient of the equation are expanded and adjusted by Taylor. By using the limit theorem, the spillover attack of SDN network is weakly converged to an approximate two-dimensional Markov diffusion process, and the improved stochastic differential equation is obtained. Then, according to the stochastic nature of SDN network attack, the stochastic differential equation is transformed into an amplitude equation, which is based on the amplitude. The equation establishes a SDN attack detection scheme based on flow table statistics, which detects the spillover attacks of SDN network flow tables. Finally, according to the test results, it is proposed to use other switches instead of network flow table overflow switches to control the data upload rate, thus reducing the possibility of network crash and meeting the attack defense requirements of flow table overflow. The simulation results show that the proposed method has better detection performance and shorter running time, and can provide help for network security related work.
As technology feature sizes decrease, single event upset (SEU), and single event transient (SET) dominate the radiation response of microcircuits. Multiple bit upset (MBU) (or multi cell upset) effects, digital single event transient (DSET) and analogue single event transient (ASET) caused serious problems for advanced integrated circuits (ICs) applied in a radiation environment and have become a pressing issue. To face this challenge, a lot of work has been put into the single event soft error mechanism and mitigation schemes. This paper presents a review of SEU and SET, including: a brief historical overview, which summarizes the historical development of the SEU and SET study since their first observation in the 1970's; effects prominent in advanced technology, which reviews the effects such as MBU, MSET as well as SET broadening and quenching with the influence of temperature, device structure etc.; the present understanding of single event soft error mechanisms, which review the basic mechanism of single event generation including various component of charge collection; and a discussion of various SEU and SET mitigation schemes divided as circuit hardening and layout hardening that could help the designer meet his goals. 相似文献
An investigation was made into the effect of doping with the elemental crystal Ge or/and GeO2 on the TiO2-V2O5-Y2O3 varistor ceramics. The result shows that as the doping contents of V2O5 and Y2O3 are 0.5 mol%, respectively, co-doping with 0.3 mol% Ge and 0.9 mol% GeO2 makes the highest α value (α = 12.8), the lowest breakdown voltage V1mA (V1mA = 15.8 V/mm) and the highest grain boundary barrier ΦB (ΦB = 1.48 eV), which is remarkably superior to the TiO2-V2O5-Y2O3 varistor ceramics undoped with Ge and GeO2 and mono-doped with Ge or GeO2. The TiO2-V2O5-Y2O3-Ge-GeO2 ceramic has the prospect of becoming a novel varistor ceramic with excellent electrical properties. 相似文献