首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70003篇
  免费   5398篇
  国内免费   2800篇
电工技术   3474篇
技术理论   10篇
综合类   4086篇
化学工业   12243篇
金属工艺   3828篇
机械仪表   4327篇
建筑科学   5964篇
矿业工程   2011篇
能源动力   2068篇
轻工业   4249篇
水利工程   1111篇
石油天然气   4371篇
武器工业   535篇
无线电   8238篇
一般工业技术   8954篇
冶金工业   3589篇
原子能技术   785篇
自动化技术   8358篇
  2024年   260篇
  2023年   1146篇
  2022年   1879篇
  2021年   2555篇
  2020年   2011篇
  2019年   1770篇
  2018年   1928篇
  2017年   2226篇
  2016年   1998篇
  2015年   2635篇
  2014年   3257篇
  2013年   3907篇
  2012年   4290篇
  2011年   4532篇
  2010年   3942篇
  2009年   3740篇
  2008年   3658篇
  2007年   3649篇
  2006年   3844篇
  2005年   3327篇
  2004年   2301篇
  2003年   2001篇
  2002年   1932篇
  2001年   1758篇
  2000年   1757篇
  1999年   2029篇
  1998年   1811篇
  1997年   1490篇
  1996年   1421篇
  1995年   1084篇
  1994年   1035篇
  1993年   714篇
  1992年   549篇
  1991年   441篇
  1990年   329篇
  1989年   263篇
  1988年   238篇
  1987年   149篇
  1986年   105篇
  1985年   80篇
  1984年   38篇
  1983年   36篇
  1982年   40篇
  1981年   22篇
  1980年   14篇
  1979年   5篇
  1978年   1篇
  1976年   1篇
  1959年   2篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 11 毫秒
991.
Tailoring inorganic components of cathode electrolyte interphase (CEI) and solid electrolyte interphase (SEI) is critical to improving the cycling performance of lithium metal batteries. However, it is challenging due to complicated electrolyte reactions on cathode/anode surfaces. Herein, the species and inorganic component content of the CEI/SEI is enriched with an objectively gradient distribution through employing pentafluorophenyl 4-nitrobenzenesulfonate (PFBNBS) as electrolyte additive guided by engineering bond order with functional groups. In addition, a catalytic effect of LiNi0.6Mn0.2Co0.2O2 (NCM622) cathode is proposed on the decomposition of PFBNBS. PFBNBS with lower highest occupied molecular orbital can be preferentially oxidized on the NCM622 surface with the help of the catalytic effect to induce an inorganic-rich CEI for superior electrochemical performance at high voltage. Moreover, PFBNBS can be reduced on the Li surface due to its lower lowest unoccupied molecular orbital , increasing inorganic moieties in SEI for inhibiting Li dendrite generation. Thus, 4.5 V Li||NCM622 batteries with such electrolyte can retain 70.4% of initial capacity after 500 cycles at 0.2 C, which is attributed to the protective effect of the excellent CEI on NCM622 and the inhibitory effect of its derived CEI/SEI on continuous electrolyte decomposition.  相似文献   
992.
The accumulation of reactive oxygen species (ROS) and minimal osteogenic raw material in the osteoporotic bone microenvironment greatly inhibits the activity of osteoblasts. Herein, it is originally proposed to construct a biomatrix multifaceted bone microenvironment amendment -Mineralized zippered G4-Hemin DNAzyme hydrogel (MDH)-to improve osteoporotic osteogenic capacity and promote high-quality bone defect repair. The programmed design of the rolling circle amplified DNA hydrogel synthesis system allows the introduction of massive amounts of zippered G4-Hemin DNAzyme in MDH. The zippered G4-Hemin DNAzyme highly mimics the tight catalytic configuration of horseradish peroxidase and exerts excellent enzyme-like activity with considerable ROS molecule scavenging ability. In addition, the DNA amplification by-product pyrophosphate is ingeniously employed as a sufficient phosphorus source, thus constituting an autonomous mineralization system for waste reuse through the introduction of pyrophosphate hydrolase and calcium ions, which deposits in MDH as an osteogenic raw material and addresses the challenge of DNA hydrogel bio-application stability. The remarkable in vitro and in vivo outcomes demonstrate that MDH can effectively improve the oxidative stress status of osteoblasts, restore the balance of mitochondrial membrane potential, and reduce apoptosis, ultimately demonstrating superior osteogenic capacity.  相似文献   
993.
Tumor precision therapy and preventing tumor recurrence and metastasis are the main challenges to tumor eradication. Herein, an apoptotic body-based vehicle with imaging navigation is developed for precise tumor delivery and photothermal-immunotherapy by IR820-conjugated apoptotic body loaded with R848 nanoparticles. The apoptotic body serves as ammunition stores as well as vehicle drive engines, while IR820 acts as a fluorescence imaging navigation and photothermal controlling system. The apoptotic body vehicle can deliver the ammunition to tumor and achieve deep penetration by macrophage-hitchhiking. Fluorescence imaging navigation opens a control window for photothermal treatment, followed by photothermal triggering of in situ vaccine formation. Further, CD47 antibody loaded hydrogel strengthens innate and adaptive immunity, simultaneously the polarization of macrophages regulates the immunosuppressive microenvironment to further promote the combined antitumor immunotherapy. With breast tumor (4T1)-bearing mice model, the apoptotic body vehicle performs excellent therapeutic efficacy for primary tumor, distant tumor, tumor metastasis, and recurrence prevention.  相似文献   
994.
Bacterial trapping using nanonets is a ubiquitous immune defense mechanism against infectious microbes. These nanonets can entrap microbial cells, effectively arresting their dissemination and rendering them more vulnerable to locally secreted microbicides. Inspired by this evolutionarily conserved anti-infective strategy, a series of 15 to 16 residue-long synthetic β-hairpin peptides is herein constructed with the ability to self-assemble into nanonets in response to the presence of bacteria, enabling spatiotemporal control over microbial killing. Using amyloid-specific K114 assay and confocal microscopy, the membrane components lipoteichoic acid and lipopolysaccharide are shown to play a major role in determining the amyloid-nucleating capacity as triggered by Gram-positive and Gram-negative bacteria respectively. These nanonets displayed both trapping and killing functionalities, hence offering a direct improvement from the trap-only biomimetics in literature. By substituting a single turn residue of the non-amyloidogenic BTT1 peptide, the nanonet-forming BTT1-3A analog is produced with comparable antimicrobial potency. With the same sequence manipulation approach, BTT2-4A analog modified from BTT2 peptide showed improved antimicrobial potency against colistin-resistant clinical isolates. The peptide nanonets also demonstrated robust stability against proteolytic degradation, and promising in vivo efficacy and biosafety profile. Overall, these bacteria-responsive peptide nanonets are promising clinical anti-infective alternatives for circumventing antibiotic resistance.  相似文献   
995.
Designing and developing visible-light-responsive materials for solar to chemical energy is an efficient and promising approach to green and sustainable carbon-neutral energy systems. Herein, a facile in situ growth hydrothermal strategy using Mo-modified ZnIn2S4 (Mo-ZIS) nanosheets coupled with NiTiO3 (NTO) microrods to synthesize multifunctional Mo-modified ZIS wrapped NTO microrods (Mo-ZIS@NTO) photocatalyst with enhanced interfacial electric field (IEF) effect and typical S-scheme heterojunction is reported. Mo-ZIS@NTO catalyst possesses wide-spectrum light absorption properties, excellent visible light-to-thermal energy effect, electron mobility, charges transfer, and strong IEF and exhibits excellent solar-to-chemical energy conversion for efficient visible-light-driven photocatalytic hydrogen evolution. Notably, the engineered Mo1.4-ZIS@NTO catalyst exhibits superior performance with H2 evolution rate of up to 14.06 mmol g−1 h− 1 and the apparent quantum efficiency of 44.1% at 420 nm. The scientific explorations provide an in-depth understanding of microstructure, S-scheme heterojunction, enhanced IEF, Mo-dopant facilitation effect. Moreover, the theoretical simulations verify the critical role of Mo element in promoting the adsorption and activation of H2O molecules, modulating the H adsorption behavior on active S sites, and thus accelerating the overall catalytic efficiency. The photocatalytic hydrogen evolution mechanism via S-scheme heterojunction with adjustable IEF regulation over Mo1.4-ZIS@NTO is also demonstrated.  相似文献   
996.
Ionic conductive soft materials for mimicking human skin are a promising topic since they can be thought of as a possible basis for biomimetic sensing. In pursuit of devices with a long working range and low signal delay, conductive materials with low hysteresis and good stretchability are highly demanded. To overcome the challenges of highly stretchable conductive materials with good resilience, herein a chemical design is proposed where polyrotaxanes act as topological cross-linkers to enhance the stretchability by sliding-induced reduced stress concentration while the compatible ionic liquid is introduced as a dispersant for low hysteresis. The obtained ionogels exhibit versatile properties more than low hysteresis (residual strain = 7%) and good stretchability (550%), and also anti-fatigue, biocompatibility, and good adhesion. The low hysteresis is attributed to lower energy dissipation from the well-dispersed polyrotaxanes by compatible ionic liquids. The mechanism provides a new insight in fabricating highly stretchable and low-hysteresis slide-ring materials. Furthermore, the conductivity of the ionogels and their responses to strains and temperatures are measured. Benefiting from the good conductivity and low hysteresis, the ionogel is applied to develop a wireless communication system to realize rapid human-machine interactions.  相似文献   
997.
Introducing anionic redox in layered oxides is an effective approach to breaking the capacity limit of conventional cationic redox. However, the anionic redox reaction generally suffers from excessive oxidation of lattice oxygen to O2 and O2 release, resulting in local structural deterioration and rapid capacity/voltage decay. Here, a Na0.71Li0.22Al0.05Mn0.73O2 (NLAM) cathode material is developed by introducing Al3+ into the transition metal (TM) sites. Thanks to the strong Al–O bonding strength and small Al3+ radius, the TMO2 skeleton and the holistic TM–O bonds in NLAM are comprehensively strengthened, which inhibits the excessive lattice oxygen oxidation. The obtained NLAM exhibits a high reversible capacity of 194.4 mAh g-1 at 20 mA g-1 and decent cyclability with 98.6% capacity retention over 200 cycles at 200 mA g−1. In situ characterizations reveal that the NLAM experiences phase transitions with an intermediate OP4 phase during the charge–discharge. Theoretical calculations further confirm that the Al substitution strategy is beneficial for improving the overlap between Mn 3d and O 2p orbitals. This finding sheds light on the design of layered oxide cathodes with highly reversible anionic redox for sodium storage.  相似文献   
998.
Ferromagnetic materials with a strong spin-orbit coupling (SOC) have attracted much attention in recent years because of their exotic properties and potential applications in energy-efficient spintronics. However, such materials are scarce in nature. Here, a proximity-induced paramagnetic to ferromagnetic transition for the heavy transition metal oxide CaRuO3 in (001)-(LaMnO3/CaRuO3) superlattices is reported. Anomalous Hall effect is observed in the temperature range up to 180 K. Maximal anomalous Hall conductivity and anomalous Hall angle are as large as ∼15 Ω−1 cm−1 and ∼0.93%, respectively, by one to two orders of magnitude larger than those of the typical 3d ferromagnetic oxides such as La0.67Sr0.33MnO3. Density functional theory calculations indicate the existence of avoid band crossings in the electronic band structure of the ferromagnetic CRO layer, which enhances Berry curvature thus strong anomalous Hall effects. Further evidences from polarized neutron reflectometry show that the CaRuO3 layers are in a fully ferromagnetic state (∼0.8 μB/Ru), in sharp contrast to the proximity-induced canted antiferromagnetic state in 5d oxides SrIrO3 and CaIrO3 (∼0.1 μB/Ir). More than that, the magnetic anisotropy of the (001)-(LaMnO3/CaRuO3) superlattices is eightfold symmetric, showing potential applications in the technology of multistate data storage.  相似文献   
999.
In diabetic wound healing, M1 macrophage accumulation and elevated inflammation are prevalent issues. Intelligent delivery systems that can sustainably release antioxidizing and anti-inflammatory ingredients are expected for effective wound healing. Herein, a novel glycyrrhetinic acid (GA) liposomes encapsulated microcapsules delivery system that has desired features for inflammatory wound repair is presented. As the bacteria could break down the alginate shells, the GA liposomes could be controllably released from the microcapsules, which promotes M2 macrophage polarization and regulate their responses in the inflammatory wound microenvironment. Based on these, it is demonstrated that the GA liposomes encapsulated microcapsules delivery system exhibits an anti-inflammatory and immunomodulatory effect for diabetic wound healing in a full-thickness defect model in diabetic rats. These results indicate that the immunomodulatory capabilities of the microcapsules can be unitized for efficient wound repair, and such a delivery system is valuable for clinical wound healing applications.  相似文献   
1000.
High current carrying capacity and high conductivity are two important indicators for materials used in microscale electronics and inverters. However, it is challenging to obtain high conductivity and high current carrying capacity at the same time since high conductivity requires a weakly bonded system to provide free electrons, while high current carrying capacity requires a strongly bonded system. In this paper, CuI@SWCNT networks by filling the single-walled carbon nanotubes (SWCNTs) with CuI is ingeniously prepared. CuI@SWCNT shows good stability due to the confinement protection of SWCNTs. Through the host-guest hybridization, CuI@SWCNT networks exhibit a current carrying capacity of 2.04 × 107 A cm−2 and a conductivity of 31.67 kS m−1. Their current carrying capacity and conductivity are significantly improved compared with SWCNT. The Kelvin probe force microscopy measurements show a drop of surface potential energy after SWCNT filled with CuI, indicating that the CuI guest molecules regulate the position of the Fermi level of SWCNTs, increasing carrier concentration, achieving high conductivity and high current carrying capacity. This study offers ideas and solutions for the regulation of high-performance carbon tube networks, which hold great promise for future applications in carbon-based electronic devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号