首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3821篇
  免费   184篇
  国内免费   57篇
电工技术   16篇
综合类   83篇
化学工业   972篇
金属工艺   587篇
机械仪表   261篇
建筑科学   29篇
矿业工程   27篇
能源动力   365篇
轻工业   133篇
水利工程   1篇
石油天然气   6篇
武器工业   9篇
无线电   221篇
一般工业技术   796篇
冶金工业   169篇
原子能技术   23篇
自动化技术   364篇
  2024年   18篇
  2023年   395篇
  2022年   277篇
  2021年   165篇
  2020年   278篇
  2019年   240篇
  2018年   98篇
  2017年   197篇
  2016年   184篇
  2015年   237篇
  2014年   219篇
  2013年   168篇
  2012年   150篇
  2011年   143篇
  2010年   106篇
  2009年   153篇
  2008年   47篇
  2007年   106篇
  2006年   121篇
  2005年   67篇
  2004年   42篇
  2003年   81篇
  2002年   70篇
  2001年   60篇
  2000年   44篇
  1999年   48篇
  1998年   12篇
  1997年   9篇
  1996年   17篇
  1995年   24篇
  1994年   18篇
  1993年   17篇
  1992年   28篇
  1991年   22篇
  1990年   17篇
  1989年   14篇
  1988年   15篇
  1987年   48篇
  1986年   38篇
  1985年   20篇
  1984年   10篇
  1983年   7篇
  1982年   5篇
  1981年   6篇
  1980年   1篇
  1979年   7篇
  1978年   5篇
  1977年   2篇
  1976年   5篇
  1951年   1篇
排序方式: 共有4062条查询结果,搜索用时 15 毫秒
21.
通过氟硅单体1,3,5-三甲基-1,3,5-三(3,3,3-三氟丙基)环三硅氧烷(简称F3)的阴离子开环聚合(ROP)、苯乙烯(St)的原子转移自由基聚合(ATRP),合成了含氟硅嵌段共聚物PMTFPS-b-PS,并将其以四氢呋喃(THF)和N,N-二甲基甲酰胺(DMF)为溶剂进行静电纺丝。采用接触角测量仪(CAM)、扫描电镜(SEM)、X射线光电子能谱(XPS)研究PMTFPSb-PS电纺膜退火前后的疏水性、微观形貌以及表面化学组成。结果表明:电纺纤维的水接触角可达152.6°,即达到超疏水的效果,经过120℃退火处理后电纺膜的表面光滑,接触角有所减小,但其水接触角仍远高于共聚物溶剂膜的接触角。  相似文献   
22.
High speed friction grinding has been used to grind plant and food substances in water but never been explored for grinding of thermoplastics like polylactic acid (PLA), low and high density polyethylene and polypropylene. Such grinding was investigated in this work and was made possible by using 0.5% guar gum solution instead of just water because increasing the viscosity of water reduced their settling and the speed of passing through the grinder. Tensile, flexural, and impact strengths of the plastics were studied and higher grinding efficiency of PLA could be explained by its low elongation-at-break compared to low density polyethylene, high density polyethylene, and polypropylene. The microplastics (2000–45 μm) were studied for mass and particle size distributions and by scanning electron microscopy, 13C CP/MAS NMR, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. In addition, viscosity of guar gum and contact angles was measured. This new technology can produce finely ground microplastics (710–45 μm) for a variety of applications.  相似文献   
23.
The large shrinkage that ceramics undergo during sintering is a severe challenge for high-performance porous ceramics. In this study, we report a powder-based selective laser sintering (SLS) approach to prepare Al2O3 ceramic foams with near-zero shrinkage, high porosity, and outstanding strength. The ceramic foams consist of specific coral-like and hollow-sphere structures derived from the raw Al2O3/Al composite powders via reaction bonding (RB). A near-zero shrinkage of 0.91 ± 0.15 % and a high porosity of 73.7 ± 0.2 % can be achieved based on the Kirkendall effect during the oxidation of Al particles. Meanwhile, the reinforced sintering necks and robust bond-bridge connections between hollow-sphere and coral-like structures result in a remarkable bending strength of 7.37 ± 0.37 MPa. This measured strength is more than six times higher than other fabricated samples from spherical Al2O3 powders, and the comprehensive performance of ceramic foams prepared by this novel SLS/RB strategy is exceptionally remarkable versus that via conventional forming methods.  相似文献   
24.
Creep properties of 2D woven CVI and PIP SiC/SiC composites with Sylramic™-iBN SiC fibers were measured at temperatures to 1650 °C in air and the data was compared with the literature. Batch-to-batch variations in the tensile and creep properties, and thermal treatment effects on creep, creep parameters, damage mechanisms, and failure modes for these composites were studied. Under the test conditions, the CVI SiC/SiC composites exhibited both matrix and fiber-dominated creep depending on stress, whereas the PIP SiC/SiC composites displayed only fiber-dominated creep. Creep durability in both composite systems is controlled by the most creep resistant phase as well as oxidation of the fibers via cracking matrix. Specimen-to- specimen variations in porosity and stress raisers caused significant differences in creep behavior and durability. The Larson-Miller parameter and Monkman-Grant relationship were used wherever applicable for analyzing and predicting creep durability.  相似文献   
25.
基于兼具修复效率高、兼容性好、热稳定性较好等优点的微胶囊化环氧?胺自修复体系,研究了其在一种中高温(100~170 ℃)酸酐固化的商用环氧树脂中的自修复性能。首先研究了所选用修复剂的热稳定性及其在微胶囊化后在树脂基体中的热稳定性,进而采用人工预混注入修复剂的方法研究了所选用修复剂与酸酐固化环氧树脂的兼容性,最后在树脂基体中加入双组分微胶囊研究了该微胶囊化环氧-胺自修复酸酐固化环氧树脂的自修复性能,并探究了微胶囊比例与浓度及树脂固化程序对自修复性能的影响。结果表明,所选用的修复剂体系热稳定性较好,微胶囊化后在树脂基体中热稳定性较高,适用于酸酐中高温固化的环氧树脂的自修复,优化后的自修复效率较高,超过80 %。  相似文献   
26.
Sn–9Zn (in wt.%) solder ball was bonded to Cu pad, and the effect of aging on shear reliability was investigated. After reflow, the intermetallic compound (IMC) phase formed at the interface was Cu5Zn8, and the as-reflowed Sn–9Zn/Cu joint had sufficient shear strength. In the isothermal aging test, only Cu5Zn8 IMC was observed in the samples aged at temperatures between 70 and 120 °C. On the other hand, after aging at 150 °C for 250 h, Cu6Sn5 phase was observed at the interface between the interfacial Cu5Zn8 IMC layer and the Cu substrate. And, the layer-type Cu5Zn8 IMC layer was disrupted locally at the interface. In the ball shear test conducted after aging treatment, the shear strength significantly decreased after aging at all temperatures for initial 100 h, and then remained constant by further prolonged aging. The fracture mainly occurred at the interface between the solder and Cu5Zn8 IMC layer. The aged Sn–9Zn/Cu solder joint had an inferior joint reliability.  相似文献   
27.
《Acta Materialia》2007,55(13):4409-4418
We report composition optimization, thermal and physical properties of new La-based bulk metallic glasses with high glass forming ability (GFA) based on a ternary La62Al14Cu24 alloy. By refining the (Cu, Ag)/(Ni, Co) and La/(Cu, Ag) ratios in the La–Al–(Cu,Ag)–(Ni, Co) pseudo-quaternary alloy, the formation of 30 mm diameter of La65Al14(Cu5/6Ag1/6)11(Ni1/2Co1/2)10 bulk metallic glass (BMG) alloy is achieved using water quenching. The origin of the high GFA was investigated from the kinetic, structural and thermodynamic points of view, and was found to be due to the smaller difference in Gibbs free-energy between the amorphous and crystalline phases in the pseudo-quaternary alloy. These alloys exhibit low glass transition temperatures, below 430 K, and relatively wide supercooled liquid regions of 40–60 K. Mechanical tests on these alloys show a fracture strength of 650 GPa, Vicker’s hardness 200 kg mm−2, Young’s modulus 35 GPa, shear modulus 13 GPa and Poisson ratio 0.356. The La-based BMGs are useful for both scientific and engineering applications.  相似文献   
28.
Inorganic/organic dielectric composites are very attractive for high energy density electrostatic capacitors. Usually, linear dielectric and ferroelectric materials are chosen as inorganic fillers to improve energy storage performance. Antiferroelectric (AFE) materials, especially single-crystalline AFE oxides, have relatively high efficiency and higher density than linear dielectrics or ferroelectrics. However, adding single-crystalline AFE oxides into polymers to construct composite with improved energy storage performance remains elusive. In this study, high-quality freestanding single-crystalline PbZrO3 membranes are obtained by a water-soluble sacrificial layer method. They exhibit classic AFE behavior and then 2D–2D type PbZrO3/PVDF composites with the different film thicknesses of PbZrO3 (0.1-0.4 µm) is constructed. Their dielectric properties and polarization response improve significantly as compared to pure PVDF and are optimized in the PbZrO3(0.3 µm)/PVDF composite. Consequently, a record-high energy density of 43.3 J cm−3 is achieved at a large breakdown strength of 750 MV m−1. Phase-field simulation indicates that inserting PbZrO3 membranes effectively reduces the breakdown path. Single-crystalline AFE oxide membranes will be useful fillers for composite-based high-power capacitors.  相似文献   
29.
MXene aerogels have shown great potential for many important functional applications, in particular electromagnetic interference (EMI) shielding. However, it has been a grand challenge to create mechanically hyperelastic, air-stable, and durable MXene aerogels for enabling effective EMI protection at low concentrations due to the difficulties in achieving tailorable porous structures, excellent mechanical elasticity, and desired antioxidation capabilities of MXene in air. Here, a facile strategy for fabricating MXene composite aerogels by co-assembling MXene and cellulose nanofibers during freeze-drying followed by surface encapsulation with fire-retardant thermoplastic polyurethane (TPU) is reported. Because of the maximum utilization of pore structures of MXene, and conductive loss enhanced by multiple internal reflections, as-prepared aerogel with 3.14 wt% of MXene exhibits an exceptionally high EMI shielding effectiveness of 93.5 dB, and an ultra-high MXene utilization efficiency of 2977.71 dB g g−1, tripling the values in previous works. Owing to the presence of multiple hydrogen bonding and the TPU elastomer, the aerogel exhibits a hyperelastic feature with additional strength, excellent stability, superior durability, and high fire safety. This study provides a facile strategy for creating multifunctional aerogels with great potential for applications in EMI protection, wearable devices, thermal management, pressure sensing, and intelligent fire monitoring.  相似文献   
30.
In the process of aircraft assembly, there exist numerous and ubiquitous cable brackets that shall be installed on frames and subsequently need to be manually verified with CAD models. Such a task is usually performed by special operators, hence is time-consuming, labor-intensive, and error-prone. In order to save the inspection time and increase the reliability of results, many researchers attempt to develop intelligent inspection systems using robotic, AR, or AI technologies. However, there is no comprehensive method to achieve enough portability, intelligence, efficiency, and accuracy while providing intuitive task assistance for inspectors in real time. In this paper, a combined AR+AI system is introduced to assist brackets inspection in a more intelligent yet efficient manner. Especially, AR-based Mask R-CNN is proposed by skillfully integrating markerless AR into deep learning-based instance segmentation to generate more accurate and fewer region proposals, and thus alleviates the computation load of the deep learning program. Based on this, brackets segmentation can be performed robustly and efficiently on mobile devices such as smartphones or tablets. By using the proposed system, CAD model checking can be automatically performed between the segmented physical brackets and the corresponding virtual brackets rendered by AR in real time. Furthermore, the inspection results can be directly projected on the corresponding physical brackets for the convenience of maintenance. To verify the feasibility of the proposed method, experiments are carried out on a full-scale mock-up of C919 aircraft main landing gear cabin. The experimental results indicate that the inspection accuracy is up to 97.1%. Finally, the system has been deployed in the real C919 aircraft final-assembly workshop. The preliminary evaluation reveals that the proposed real-time AR-assisted intelligent inspection approach is effective and promising for large-scale industrial applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号