首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3814篇
  免费   191篇
  国内免费   57篇
电工技术   16篇
综合类   83篇
化学工业   973篇
金属工艺   587篇
机械仪表   261篇
建筑科学   29篇
矿业工程   27篇
能源动力   365篇
轻工业   133篇
水利工程   1篇
石油天然气   6篇
武器工业   9篇
无线电   221篇
一般工业技术   795篇
冶金工业   169篇
原子能技术   23篇
自动化技术   364篇
  2024年   18篇
  2023年   395篇
  2022年   276篇
  2021年   165篇
  2020年   278篇
  2019年   241篇
  2018年   98篇
  2017年   197篇
  2016年   184篇
  2015年   237篇
  2014年   219篇
  2013年   168篇
  2012年   150篇
  2011年   143篇
  2010年   106篇
  2009年   153篇
  2008年   47篇
  2007年   106篇
  2006年   121篇
  2005年   67篇
  2004年   42篇
  2003年   81篇
  2002年   70篇
  2001年   60篇
  2000年   44篇
  1999年   48篇
  1998年   12篇
  1997年   9篇
  1996年   17篇
  1995年   24篇
  1994年   18篇
  1993年   17篇
  1992年   28篇
  1991年   22篇
  1990年   17篇
  1989年   14篇
  1988年   15篇
  1987年   48篇
  1986年   38篇
  1985年   20篇
  1984年   10篇
  1983年   7篇
  1982年   5篇
  1981年   6篇
  1980年   1篇
  1979年   7篇
  1978年   5篇
  1977年   2篇
  1976年   5篇
  1951年   1篇
排序方式: 共有4062条查询结果,搜索用时 15 毫秒
51.
Establishing accurate dynamic models in a form that is suitable for integration with model-based control methods, is of great significance for further improving the dynamic motion control precision of ball-screw drives. However, due to the nonlinear time-varying factors such as position-dependent dynamics and nonlinear friction disturbance, it is difficult to model the dynamic characteristics of ball-screw drives accurately, concisely and efficiently. To overcome this challenge, a sparse identification method for ball-screw drives is proposed. Ball-screw drives are modeled as discrete-time linear parameter-varying systems under nonlinear friction disturbance, and two types of dictionary function libraries are designed to represent the position-dependent dynamics and nonlinear friction respectively. After constructing the regression form of the system model, a stepwise sparse regression policy is proposed to solve all the coefficients of dictionary functions. The proposed method is verified in both simulation and real environments. The results both show that by the proposed method, an accurate and linearizable dynamic model of ball-screw drives can be identified only using the data from only one global random excitation experiment covering the working stroke.  相似文献   
52.
Currently, expectations of shorter time-to-market and improved product performance are placing greater demands on manufacturing companies. However, the optimization and redesign work between the design stage and the prototype design and manufacturing stage in the traditional product development process lengthens the required product development cycle time (which lasts up to several years in extreme cases). The manufacturing phase for the physical prototype of the product is especially time-consuming and costly. The above reasons make the common product development process increasingly unable to meet the demands of market needs. Motivated by this need, the digital twin (DT)-driven manufacturing equipment (ME) development method is studied in this paper. This method contains three main core elements of the design method based on axiomatic design (AD) theory, the construction of DT models related to ME development, and DT-based validation analysis. The advantage of this method is that it can incorporate the physical prototype manufacturing stage into the digital space with the high-fidelity model provided by the DT technology, which ensures the confidentiality of the design scheme validation while freeing it from the physical prototype stage. This avoids the cost of physical prototyping, shortens the product development cycle, and improves the efficiency of new ME development. At the end of this paper, a case study of the development of a virtual machining dynamic performance test bench (VM-TB) is carried out to show the implementation flow of this proposed method, and its operability and effectiveness are verified.  相似文献   
53.
Smart textiles with good mechanical adaptability play an important role in personal protection, health monitoring, and aerospace applications. However, most of the reported thermally responsive polymers has long response time and poor processability, comfort, and wearability. Skin-core structures of thermally responsive fibers with multiple commercial fiber cores and temperature-responsive hydrogel skins are designed and fabricated, which exhibit rapid mechanical adaptability, good thermohardening, and thermal insulation. This universal method enables tight bonding between various commercial fiber cores and hydrogel skins via specific covalently anchored networks. At room temperature, prepared fibers show softness, flexibility, and skin compatibility similar to those of ordinary fibers. As temperature rises, smart fibers become hard, rigid, and self-supporting. The modulus of hydrogel skin increases from 304% to 30883%, showing good mechanoadaptability and impact resistance owing to the synergy between hydrophobic interactions and ionic bonding. Moreover, this synergistic effect leads to an increase in heat absorption, and fibers exhibit good thermal insulation, which reduces the contact temperature of the body surface by ≈25 °C under the external temperature of 95 °C, effectively preventing thermal burns. Notably, the active mechanoadaptability of these smart fibers using conductive fibers as cores is demonstrated. This study provides feasibility for fabricating environmentally adaptive intelligent textiles.  相似文献   
54.
Extreme environments are often faced in energy, transportation, aerospace, and defense applications and pose a technical challenge in sensing. Piezoelectric sensor based on single-crystalline AlN transducers is developed to address this challenge. The pressure sensor shows high sensitivities of 0.4–0.5 mV per psi up to 900 °C and output voltages from 73.3 to 143.2 mV for input gas pressure range of 50 to 200 psi at 800 °C. The sensitivity and output voltage also exhibit the dependence on temperature due to two origins. A decrease in elastic modulus (Young's modulus) of the diaphragm slightly enhances the sensitivity and the generation of free carriers degrades the voltage output beyond 800 °C, which also matches with theoretical estimation. The performance characteristics of the sensor are also compared with polycrystalline AlN and single-crystalline GaN thin films to investigate the importance of single crystallinity on the piezoelectric effect and bandgap energy-related free carrier generation in piezoelectric devices for high-temperature operation. The operation of the sensor at 900 °C is amongst the highest for pressure sensors and the inherent properties of AlN including chemical and thermal stability and radiation resistance indicate this approach offers a new solution for sensing in extreme environments.  相似文献   
55.
采用光纤激光器开展了碳钢板表面锈蚀层激光清洗研究,通过白光干涉仪、光学显微镜、拉曼光谱仪等研究了激光扫描速度对锈蚀层去除质量的影响。研究表明,当激光扫描速度小于2 000 mm/s时,因光斑搭接率高,热累积效应强,试样表面出现基材熔化重凝现象,同时试样表面发生二次氧化,生成了复杂的铁的氧化物膜层,此时试样表面粗糙度最小。当激光扫描速度增加到3000 mm/s时,试样表面锈蚀层去除干净,露出金属基底本身色泽,基材表面二次氧化减弱。当线速度继续增加时,因光斑搭接率低,锈蚀层吸收的激光能量少,仅有部分锈蚀被去除,试样表面开始出现残留锈蚀层,且随着线速度的增加,残留锈蚀层和试样表面粗糙度增加。通过调节扫描速度可以获得较好的除锈效果,工艺优化后,激光功率为120 W时,除锈效率达到1.5 m2/h。  相似文献   
56.
Driver’s collision avoidance performance has a direct link to the collision risk and crash severity. Previous studies demonstrated that the distracted driving, such as using a cell phone while driving, disrupted the driver’s performance on road. This study aimed to investigate the manner and extent to which cell phone use and driver’s gender affected driving performance and collision risk in a rear-end collision avoidance process. Forty-two licensed drivers completed the driving simulation experiment in three phone use conditions: no phone use, hands-free, and hand-held, in which the drivers drove in a car-following situation with potential rear-end collision risks caused by the leading vehicle’s sudden deceleration. Based on the experiment data, a rear-end collision risk assessment model was developed to assess the influence of cell phone use and driver’s gender. The cell phone use and driver’s gender were found to be significant factors that affected the braking performances in the rear-end collision avoidance process, including the brake reaction time, the deceleration adjusting time and the maximum deceleration rate. The minimum headway distance between the leading vehicle and the simulator during the rear-end collision avoidance process was the final output variable, which could be used to measure the rear-end collision risk and judge whether a collision occurred. The results showed that although cell phone use drivers took some compensatory behaviors in the collision avoidance process to reduce the mental workload, the collision risk in cell phone use conditions was still higher than that without the phone use. More importantly, the results proved that the hands-free condition did not eliminate the safety problem associated with distracted driving because it impaired the driving performance in the same way as much as the use of hand-held phones. In addition, the gender effect indicated that although female drivers had longer reaction time than male drivers in critical situation, they were more quickly in braking with larger maximum deceleration rate, and they tended to keep a larger safety margin with the leading vehicle compared to male drivers. The findings shed some light on the further development of advanced collision avoidance technologies and the targeted intervention strategies about cell phone use while driving.  相似文献   
57.
《材料科学技术学报》2019,35(10):2144-2155
Ni-Cu nano-coatings were prepared by pulsed electroplating technique in the baths containing various amount of boric acid. Their microstructure, morphologies and corrosion resistance were characterized in detail. The addition of boric acid strongly influences on the microstructure of the Ni-Cu coatings. The coating with a grain size of 130 nm, obtained from the bath containing 35 g L−1 boric acid, shows the highest corrosion resistance. This is attributed to the low-valence Cu ion (Cu+) additions in nickel oxide, which could significantly decrease the oxygen ion vacancy density in the passive film to form a more compact passive film. The higher Cu+ additions and the lower diffusivity of point defects (D0) are responsible for the formation of more compact passive film on the coating obtained from the bath with 35 g L−1 boric acid.  相似文献   
58.
《材料科学技术学报》2019,35(9):1977-1981
Titanium oxide (TiO2), with excellent cycling stability and low volume expansion, is a promising anode material for lithium-ion battery (LIB), which suffers from low electrical conductivity and poor rate capability. Combining nano-sized TiO2 with conductive materials is proved an efficient method to improve its electrochemical properties. Here, rutile TiO2/carbon nanosheet was obtained by calcinating MAX (Ti3AlC2) and Na2CO3 together and water-bathing with HCl. The lamellar carbon atoms in MAX are converted to 2D carbon nanosheets with urchin-like rutile TiO2 anchored on. The unique architecture can offer plentiful active sites, shorten the ion diffusion distance and improve the conductivity. The composite exhibits a high reversible capacity of 247 mA h g−1, excellent rate performance (38 mA h g−1 at 50 C) and stable cycling performance (0.014% decay per cycle during 2000 cycles) for lithium storage.  相似文献   
59.
《材料科学技术学报》2019,35(10):2297-2304
Structure searches based on a combination of first-principles calculations and a particle swarm optimization technique unravel two new stable high-pressure structures (C2/m and Cmce) for TaN2. The structural features, mechanical properties, formation enthalpies, electronic structure, and phase diagram of TaN2 are fully investigated. Being mechanically and dynamically stable, the two phases could be made metastable experimentally at ambient conditions.  相似文献   
60.
In this work, the numerical simulations and electromagnetic riveting (EMR) experiments were conducted to investigate microstructure evolution and the forming mechanism of adiabatic shear bands (ASBs). And the effects of rivet dies on microstructure distributions in formed heads and mechanical properties of riveted structures were systematically explored. The impact velocity and deformation distribution results demonstrated that the proposed numerical method was accurate and reliable. The simulation results showed the slope angle of rivet dies notably affected the plastic flow of materials, and then determined the microstructure distribution in formed heads. The combined effects of inhomogeneous plastic flow and thermal softening were accounted for the forming of ASBs. The formed heads had two obvious ASBs (upper and lower ASB) for the 40° rivet die and flat rivet die. The formed heads only had the lower ASB and no clear upper for the 60° rivet die and 80° rivet die. The pull-out test results showed that the specific rivet die could improve the mechanical properties of the EMR joints, which contribute to the engineering applications of EMR riveted structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号