首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2608篇
  免费   175篇
  国内免费   54篇
电工技术   3篇
综合类   100篇
化学工业   893篇
金属工艺   224篇
机械仪表   36篇
建筑科学   14篇
矿业工程   9篇
能源动力   135篇
轻工业   12篇
水利工程   2篇
石油天然气   1篇
武器工业   5篇
无线电   74篇
一般工业技术   1205篇
冶金工业   77篇
原子能技术   12篇
自动化技术   35篇
  2024年   6篇
  2023年   166篇
  2022年   85篇
  2021年   73篇
  2020年   105篇
  2019年   100篇
  2018年   48篇
  2017年   77篇
  2016年   109篇
  2015年   187篇
  2014年   167篇
  2013年   169篇
  2012年   197篇
  2011年   113篇
  2010年   139篇
  2009年   163篇
  2008年   69篇
  2007年   165篇
  2006年   121篇
  2005年   53篇
  2004年   56篇
  2003年   37篇
  2002年   42篇
  2001年   60篇
  2000年   42篇
  1999年   38篇
  1998年   14篇
  1997年   5篇
  1996年   9篇
  1995年   16篇
  1994年   22篇
  1993年   21篇
  1992年   12篇
  1991年   13篇
  1990年   19篇
  1989年   10篇
  1988年   16篇
  1987年   28篇
  1986年   25篇
  1985年   11篇
  1984年   9篇
  1983年   5篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1979年   4篇
  1978年   3篇
  1976年   1篇
排序方式: 共有2837条查询结果,搜索用时 9 毫秒
51.
Replacing autoclave processes is a well-known industry drive in the composites community. One of the most recognized candidates for this replacement is high injection pressure resin transfer moulding (HIPRTM), because it is both an out of autoclave process and because the high processing pressures can, hypothetically, reduce the size of voids, thereby reducing void content. In order to clarify this issue, this paper presents our results on the size distribution and total void fraction of composites containing high fibre volume fractions (>60%) composites produced by HIPRTM. To substantiate this work we present a comparative study considering both autoclave and RTM at lower pressure/fibre volume fractions. Results show that HIPRTM is able to produce high fibre volume fraction parts at very low void content (<0.05%) and is comparable to autoclave results. Future work should study the mechanical properties of these laminates in order to clarify further the limits of HIPRTM.  相似文献   
52.
In order to protect the internal components of an aircraft from the damage caused by high temperature and heat flux, an effective thermal protection structure must be designed and developed. In this paper, heat transfer characteristics for an innovative thermal protection coating structure are investigated, based on three-dimensional photonic crystals (SiC-3D PCs). The actual system with coating material, containing photonic crystals, is simplified as a macroscopic model of one-dimensional coupled conduction–radiation heat transfer among three layers composed of semitransparent media. Moreover, according to preliminary physical parameters, heat transfer profiles and thermal protection efficiency for the whole system are estimated. In addition, the effect of the photonic crystals part is analyzed.  相似文献   
53.
This paper presents an analytical method for designing the configuration of composite joint with three-dimensional (3D) five-directional braided composites. Based on the analysis of 3D braided structure characteristics, the elastic properties of the 3D five-directional braided composites were determined by the volume averaging method. The effects of the braiding angle and fiber volume fraction on the elastic constants of the braided composites were also discussed. Finite element analysis on the load capacity of the 3D five-directional braided composite joint was implemented using the software ANSYS Workbench 14.0. The influence of braiding angle on the stress, strain and deformation of the composite joint under tensile loading were calculated. The results show that when the fiber volume fraction of the 3D five-directional braided preform is given, the equivalent stress of the composite joint decreases monotonically as the braiding angle increases, while the normal stress, maximum principal stress and total deformation firstly decreases and then increases. Based on the finite element analysis, we found that at the fiber volume fraction of 60%, the braiding angle within the range of 30–35° are the optimum processing parameters for the 3D five-directional braided composite joint structure that used in the tensile load 320 N condition.  相似文献   
54.
The use of lubricant is the key of warm compaction technology. Because of admixed different lubricants, the optimal parameters of warm compaction process were also different. This paper investigated the effect of two kind of lubricants (zinc stearate and polystyrene) on the parameters of warm compaction process by compared properties of Cu-based composite. It was shown that with the rise of compacting pressure, the density and hardness of the Cu-based composite increased, but the resistivity and gaining weight reduced. With increasing compacting temperature, the density and hardness first increased and then decreased, but the trend of resistivity and gaining weight just reversed. For the samples admixed zinc stearate (ZS), the optimal admixed concentration was 0.4 wt%, and the sample prepared at 120 °C and 650 MPa had the highest density and hardness, the lowest resistivity and gaining weight. For the samples admixed polystyrene (PS), these parameters were 0.7 wt%, 140 °C and 650 MPa, respectively. The properties of samples admixed PS were superior to that of admixed ZS.  相似文献   
55.
56.
The cooling rate effects on the βo  ωo phase transformation in Ti–45Al–8.5Nb–(W, B, Y) (at.%) alloy were investigated by annealing the alloy at 950 °C followed by different cooling methods. The morphology and the distribution of the ω-related phases were analyzed by TEM. The amount and morphology of the ω-related phases are very sensitive to the cooling rate. The ω-related phases could not be resolved in the water-quenched sample whereas it grew into nano-particles in the air-cooled sample. In the furnace-cooled sample, the ωo phase with B82 structure grew into micron-sized particles and occupied the whole βo area. The nucleation of the ordered ω embryos can be explained by the well accepted displacive mechanism because of the instability of the βo(B2) structure, accompanied by a short-range diffusion process between neighboring {111}βo planes. However, the growth of the ω-related phases is controlled by a long-range diffusion process. Due to ready nucleation and growth, the ordered ω formation is bound to occur in as-cast and heat-treated high Nb–TiAl alloys.  相似文献   
57.
The nanostructure and mechanical properties of ferritic-austenitic duplex stainless steel subjected to hydrostatic extrusion were examined. The refinement of the structure in the initial state and in the two deformation states (ε = 1.4 and ε = 3.8) was observed in an optical microscope (OM) and a transmission electron microscope (TEM). The results indicate that the structure evolved from microcrystalline with a grain size of about 4 μm to nanocrystalline with a grain size of about 150 nm in ferrite and 70 nm in austenite. The material was characterized mechanically by tensile tests performed in the two deformation states. The ultimate strength appeared to increase significantly compared to that in the initial deformation stages, which can be attributed to the grain refinement and plastic deformation. The heterogeneity observed in microregions results from the dual-phase structure of the steel. The results indicate that hydrostatic extrusion is a highly potential technology suitable for improving the properties of duplex steels.  相似文献   
58.
The compressive mechanical properties of two kinds of closed-cell aluminum foam–polymer composites (aluminum–epoxy, aluminum–polyurethane) were studied. The nonhomogeneous deformation features of the composites are presented based on the deformation distributions measured by the digital image correlation (DIC) method. The strain fluctuations rapidly grow with an increase in the compressive load. The uneven level of the deformation for the aluminum–polyurethane composite is lower than that for the aluminum–epoxy composite. The region of the preferentially fractured aluminum cell wall can be predicted by the strain distributions in two directions. The mechanical properties of the composites are investigated and compared to those of the aluminum foams. The enhancement effect of the epoxy resin on the Young’s modulus, the Poisson’s ratio and the compressive strength of the aluminum foams is greater than that of the polyurethane resin.  相似文献   
59.
This paper investigates the manufacturing distortion of curved composite parts manufactured by a new Liquid Composite Molding (LCM) process called Flexible Injection (FI). This technique uses a deformable tool to speed up the fabrication but may generate manufacturing defects when strongly curved shapes are processed. The goal of the study is to evaluate the impact of such heterogeneities on the dimensional stability of the product. Curved components were first manufactured with varying processing conditions to achieve a wide range of layup quality. The shape stability of the samples was then recorded as a function of temperature to measure the thermoelastic component of distortion and experimental results were compared with predictions made by two modeling techniques. Under certain conditions, manufacturing defects can significantly affect the distortion behavior. This suggests that a robust preforming procedure is of primary importance to produce curved parts by Flexible Injection with a high level of repeatability.  相似文献   
60.
The Primordial Inflation Explorer (PIXIE) is a proposed mission to study the polarization of the remnant cosmic microwave background with the goal of finding and understanding primordial gravity waves. The instrument has been designed to capture this information across the entire sky by rejecting foreground signals and suppressing systematic error by multiple differencing methods. The instrument operates at a temperature very close to the cosmic microwave background of 2.7 K, while the detectors operate at 0.1 K. The PIXIE cryogenic system provides this in low Earth orbit by making use of three subsystems. Lightweight, simply deployed shields provide protection against the Earth and Sun while passively cooling wiring and instrument supports at 150 K. A mechanical cryocooler precools wires and supports at 68, 17, and 4.5 K while its compressors operate at room temperature. And finally two adiabatic demagnetization refrigerators cool the instrument from 4.5 to 2.7 K and cool the detectors to 0.1 K. Staged cooling in this manner allows a thermodynamically efficient use of relatively mature technologies that can be fully demonstrated before flight.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号