首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2748篇
  免费   152篇
  国内免费   25篇
电工技术   10篇
综合类   21篇
化学工业   1140篇
金属工艺   216篇
机械仪表   37篇
建筑科学   10篇
矿业工程   2篇
能源动力   222篇
轻工业   39篇
水利工程   1篇
石油天然气   3篇
武器工业   3篇
无线电   114篇
一般工业技术   964篇
冶金工业   88篇
原子能技术   9篇
自动化技术   46篇
  2024年   6篇
  2023年   218篇
  2022年   162篇
  2021年   107篇
  2020年   174篇
  2019年   157篇
  2018年   92篇
  2017年   127篇
  2016年   149篇
  2015年   164篇
  2014年   186篇
  2013年   176篇
  2012年   132篇
  2011年   97篇
  2010年   122篇
  2009年   130篇
  2008年   37篇
  2007年   114篇
  2006年   78篇
  2005年   50篇
  2004年   26篇
  2003年   46篇
  2002年   47篇
  2001年   49篇
  2000年   31篇
  1999年   34篇
  1998年   14篇
  1997年   7篇
  1996年   7篇
  1995年   20篇
  1994年   17篇
  1993年   12篇
  1992年   15篇
  1991年   7篇
  1990年   15篇
  1989年   7篇
  1988年   16篇
  1987年   37篇
  1986年   26篇
  1985年   11篇
  1982年   3篇
排序方式: 共有2925条查询结果,搜索用时 312 毫秒
1.
《Ceramics International》2022,48(15):21317-21326
1T phase molybdenum disulfide (1T-MoS2) has aroused extensive concern in energy storage devices such as supercapacitors due to its large interlayer spacing, high conductivity and good hydrophilicity. However, it is struggle to synthesize 1T-MoS2 with stable 1T phase with high content. Herein, Ammonium ion intercalation molybdenum disulfide (A-MoS2) with high 1T content and stable 3D microsphere structure was successfully synthesized using a facile hydrothermal method. We explained the feasibility of ammonium ion (NH4+) intercalation through density functional theory (DFT) calculations and proved the successful intercalation of NH4+ by XRD and XPS. Through XPS fitting, the 1T phase content is calculated as high as 83.1%. The as-prepared A-MoS2 presents a stable 3D microsphere structure with the interlayer spacing expanded to 0.93 nm, which provides a wide ion diffusion channel that allows ions to pass through quickly. Moreover, the high 1T content increases the hydrophilicity of MoS2, thereby improving the wettability of the electrode, which contributes to the interaction between the electrolyte and electrode. In 1 M Na2SO4, A-MoS2 electrode material displays high specific capacitance of 228 F g?1 at 5 mV s?1 and retains 127 F g?1 at 80 mV s?1, which proves the good rate capability. Furthermore, the assembled α-MnO2//A-MoS2 asymmetric supercapacitor (ASC) displayed a wide operating voltage of 2.1 V. The assembled ASC displays a high energy density of 35.8 Wh?kg?1 at a power density of 525.0 W kg?1, which indicates excellent energy storage performance.  相似文献   
2.
Refining ceramic microstructures to the nanometric range to minimize light scattering provides an interesting methodology for developing novel optical ceramic materials. In this work, we reported the fabrication and properties of a new nanocomposite optical ceramic of Gd2O3-MgO. The citric acid sol-gel combustion method was adopted to fabricate Gd2O3-MgO nanocomposites with fine-grain sizes, dense microstructures and homogeneous phase domains. Nanopowders with low agglomeration and improved sinterability can be obtained by elaborating Φ values. Further refining of the microstructure of the nanocomposites was achieved by elaborating the hot-pressing conditions. The sample sintered at 65 MPa and 1300 °C showed a quite high hardness value of 14.3 ± 0.2 GPa, a high transmittance of 80.3 %–84.7 % over the 3?6 μm wavelength range, due mainly to its extremely fine-grain size of Gd2O3 and MgO (93 and 78 nm, respectively) and high density.  相似文献   
3.
The brittleness of MoSi2 ceramic and the thermal mismatch between MoSi2 coating and C / C composite lead to brittle cracking of the coating at 900−1200 °C. This problem has been overcome in this studyby introducing submicron-SiB6 into the coating. The pre-fabricated cracks and a kinetics model of hot-pressed SiB6-MoSi2 ceramic could quantitatively predict the glass growth and crack healing. As expected, enhancing temperature and SiB6 content increased the growth rate of the borosilicate glass and the crack healing ability of MoSi2 ceramic, which was ascribed to the lower oxidation activation energy and larger specific surface area of submicron-SiB6. For the plasma sprayed coating, SiB6 with submicron structure was benefit for cracking inhibition and formation of borosilicate glass during oxidation, reducing the oxygen permeability and the consumption of inner coating. Hence, the 15 % SiB6-MoSi2 coatings raised the protection times to 84 and 120 h at 900 and 1200 °C respectively, presenting favorable oxidation protective performance.  相似文献   
4.
5.
6.
Structural bonding and bonded repairs of composite materials become more and more important. Understanding the strain within the bondline leads to suitable bonding design. For new design approaches the strain distribution within the bondline has to be analyzed. Thus, often finite element analysis (FE) are used. However, a huge challenge is the availability of reliable material properties for the adhesives and their validation. Previous work has shown that it is possible to measure the small displacements resulting within thin epoxy film adhesives using high resolution digital image correlation (DIC). In this work a 2D DIC setup with a high resolution consumer camera is used to visualize the strain distribution within the bondline over the length of the joint as well as over the adhesive thickness. Therefore, single lap joints with thick aluminum adherends according to ASTM D 5656 are manufactured and tested. Local 2D DIC strain measurements are performed and analyzed. Two different camera setups are used and compared. The evaluation provides reliable material data and enables a look insight the bondline. The results of the full field strain data measured with DIC are compared with numerical simulations. Thus, material models as well as chosen parameters for the adhesive are validated. Compared to extensometers, giving only point-wise information for fixed measuring points, the DIC allows a virtual point-wise inspection along the complete bondline. Furthermore, it allows measuring close to the bondline to reduce the influence of adherend deformation.  相似文献   
7.
The paper presents a calculated analysis of the equilibrium emission of nitrogen oxides on the exhaust of carburetor and diesel internal combustion engines. The temperature of fuel oxidation is assumed to be 1,400 °C while the pressure for carburetor and diesel engines is assumed to be 60 atm and 80 atm respectively. The studies have been carried out for natural and synthetic fuels such as hydrogen, ethanol, methanol, petroleum, diesel fuel and methane at the excess air coefficient corresponding to the fuel oxidation temperature of 1,400 °C. In the paper, the method for calculating the equilibrium composition based on the equilibrium constant and mass conservation equations has been applied. It is shown that with an increase in pressure from 1 atm to 60 atm for carburetor engines and up to 80 atm for diesel engines, the reaction of nitrogen dioxide formation may shift towards an increase in NO2. The formation of NO may be not affected by the increase in pressure by virtue of the fact that the reaction proceeds without changes in the amount. It has been determined that NO is the major atmospheric pollutant. However, it would be advisable to use more extensively the fuels characterized by the lowest output of nitrogen dioxide (methane and methanol), since nitrogen dioxide (NO2) related to the 2nd hazard class is appeared to be the most dangerous to humans. It has been revealed that the reduction in oxidation temperature using hydrogen as a fuel for electrochemical current generators may allow reducing nitrogen oxide emissions by more than an order of magnitude as compared to the best results for ICE.  相似文献   
8.
《CIRP Annals》2020,69(1):33-36
The vast Carbon Fiber Reinforced Polymer (CFRP) waste accumulated is pressing for its recycling. A novel recycling approach, which integrated carbon fiber reclamation and composite additive manufacturing, is proposed to process the CFRP waste into three Dimensional (3D) parts. In the experiments, the CFRP waste was recycled by supercritical n-butanol to yield reclaimed Carbon Fibers (rCFs). The rCFs were ground by a ball mill, mixed with Poly-Ether-Ether-Ketone (PEEK) powder and then extruded to the composite filament. The filament was fed to the Fused Deposition Modeling (FDM) printer to fabricate 3D parts. Mechanical and electrical properties of the parts were investigated and compared with that of pure PEEK. The results illustrate that the additive manufacturing-based approach offers a potential strategy to reuse the CFRP waste and rapidly fabricate the rCF reinforced plastics with complex geometry and function.  相似文献   
9.
Highly (100)-oriented Ce1-x(Y0.2Zr0.8)xOδ (CYZO) films were prepared on biaxially textured NiW substrates by a chemical solution deposition approach using metal inorganic salts as starting materials. It has been found that both the preferential orientation and surface roughness of CYZO films decrease gradually with increasing of the doping percentage of Y3+ and Zr4+ ions. The epitaxial growth relationship of (220)CYZO//(200)NiW and [00?l]CYZO//[001]NiW was demonstrated by XRD texture measurement as well as atomic resolution STEM observation. XRD, Raman and XPS spectra results indicate that Y3+ and Zr4+ ions were indeed introduced into CeO2 lattice to substitute Ce4+ ions and form cubic fluorite CYZO solid solution. Moreover, CeO2 buffer layer can be endowed a strong enough capability to prevent element diffusion through co-doping of yttrium and zirconium, provided that an optimal doping ratio of them is adopted. This will provide a new approach to fabricating strong-barrier single buffer layer for coated conductor.  相似文献   
10.
《Composites Part A》2007,38(2):323-336
In this paper, a new simple metallic z-rod model is proposed to study the bending effect of the metallic z-rods on mode II delamination toughness of laminated composites. A new transverse shear force–deformation relationship for a metallic z-rod is obtained by using the classical beam theory and modeling its surrounding matrix as linearly elastic, rigid–perfectly plastic or linearly elastic–perfectly plastic springs. The bridging traction provided by a metallic z-rod to the mode II delamination toughness is assumed to be only the shear force carried by a z-rod created by the relative slippage between two substrate beams in an end-notched flexure (ENF) specimen, whereas the longitudinal sliding friction is assumed to make negligible contribution to the bridging traction. Mode II strain energy release rate (SERR) is employed to evaluate the influence of the metallic z-rods on the interlaminar fracture toughness of end-notched flexure (ENF) specimens. A parametric study of ENF specimens reinforced with the z-rods is conducted to demonstrate the effect of the new bridging mechanism by the metallic z-rods on the mode II delamination toughness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号