首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2748篇
  免费   152篇
  国内免费   25篇
电工技术   10篇
综合类   21篇
化学工业   1140篇
金属工艺   216篇
机械仪表   37篇
建筑科学   10篇
矿业工程   2篇
能源动力   222篇
轻工业   39篇
水利工程   1篇
石油天然气   3篇
武器工业   3篇
无线电   114篇
一般工业技术   964篇
冶金工业   88篇
原子能技术   9篇
自动化技术   46篇
  2024年   6篇
  2023年   218篇
  2022年   162篇
  2021年   107篇
  2020年   174篇
  2019年   157篇
  2018年   92篇
  2017年   127篇
  2016年   149篇
  2015年   164篇
  2014年   186篇
  2013年   176篇
  2012年   132篇
  2011年   97篇
  2010年   122篇
  2009年   130篇
  2008年   37篇
  2007年   114篇
  2006年   78篇
  2005年   50篇
  2004年   26篇
  2003年   46篇
  2002年   47篇
  2001年   49篇
  2000年   31篇
  1999年   34篇
  1998年   14篇
  1997年   7篇
  1996年   7篇
  1995年   20篇
  1994年   17篇
  1993年   12篇
  1992年   15篇
  1991年   7篇
  1990年   15篇
  1989年   7篇
  1988年   16篇
  1987年   37篇
  1986年   26篇
  1985年   11篇
  1982年   3篇
排序方式: 共有2925条查询结果,搜索用时 31 毫秒
61.
The characteristics of network formation of multiwall carbon nanotubes (MWCNTs) inside ethylene–octene copolymer (EOC) melts under an alternating current (AC) electric field and the resulting electrical conductivity improvements are studied by combining dynamic and steady state resistivity measurements. Fine MWCNT dispersion during melt compounding of the samples is accomplished by means of a novel non-specific, non-covalent functionalization method. It is found that the electrified composite films exhibit nanotube assembly into columnar structures parallel to the electric field, accompanied by dramatic increases in electrical conductivity up to eight orders of magnitude. Experimentally acquired resistivity data are used to derive correlations between the characteristic insulator-to-conductor transition times of the composites and process parameters, such as electric field strength (E), polymer viscosity (η) and nanotube volume fraction (ϕ). Finally, a criterion for the selection of (η, E, C) conditions that enable MWCNT assembly under an electric field controlled regime (i.e., minimal Brownian motion-driven aggregation effects) is developed. The correlations presented herein not only provide insights in the MWCNT assembly process, but can also guide the experimental design in future studies on electrified composites or assist in the selection of process parameters in composites manufacturing.  相似文献   
62.
An elastic-plastic interface model at finite deformations is utilized to investigate the irreversible delamination behavior of adhesive joints subjected to loading-delamination-unloading. The interface model accounts for the irreversible delamination in the fracture process zone induced by the localized plastic deformation and damage. The interfacial parameters in the cohesive model are obtained by fitting the available experimental data. Results suggest that the cohesive model can capture the irreversible delamination failure behavior observed in adhesively bonded joints during a loading-unloading cycle. The overall nonlinear response is dominated by the cohesive strength and initial damage displacement jump. Further, we also investigate the effect of the ductile mechanisms for the bulk layer on the competition between the plastic deformation of the bulk layer and the delamination of the interface. It is observed that the degradation of unloading stiffness is attributed to the inelastic behavior of the interface.  相似文献   
63.
This paper studies the fatigue behavior of basalt fiber reinforced epoxy polymer (BFRP) composites and reveals the degradation mechanism of BFRP under different stress levels of cyclic loadings. The BFRP composites were tested under tension–tension fatigue load with different stress levels by an advanced fatigue loading equipment combined with in-situ scanning electron microscopy (SEM). The specimens were under long-term cyclic loads up to 1 × 107 cycles. The stiffness degradation, SN curves and the residual strength of run-out specimens were recorded during the test. The fatigue strength was predicted with the testing results using reliability methods. Meanwhile, the damage propagation and fracture surface of all specimens were observed and tracked during fatigue loading by an in-situ SEM, based on which damage mechanism under different stress levels was studied. The results show the prediction of fatigue strength by fitting SN data up to 2 × 106 cycles is lower than that of the data by 1 × 107 cycles. It reveals the fatigue strength perdition is highly associated with the long-term run-out cycles and traditional two million run-out cycles cannot accurately predict fatigue behavior. The SEM images reveal that under high level of stress, the critical fiber breaking failure is the dominant damage, while the matrix cracking and interfacial debonding are main damage patterns at the low and middle fatigue stress level for BFRP. Based on the above fatigue behavior and damage pattern, a three stage fracture mechanism model under fatigue loading is developed.  相似文献   
64.
《Ceramics International》2016,42(9):11118-11125
Nanostructured 4SYSZ (scandia (3.5 mol%) yttria (0.5 mol%) stabilized zirconia) and 5.5 SYSZ (5 mol% scandia and 0.5 mol% yttria) thermal barrier coatings (TBCs) were deposited on nickel-based superalloy using NiCrAlY as the bond coat by plasma spraying process. The thermal shock response of both as-sprayed TBCs was investigated at 1000 °C. Experimental results indicated that the nanostructured 5.5SYSZ TBCs have better thermal shock performance in contrast to 4SYSZ TBCs due to their higher tetragonal phase content and higher fracture toughness of this coating  相似文献   
65.
In order to improve the dispersion of silica in rubber matrix and to avoid volatility and extractability of the antioxidants, antioxidant functionalized silica is synthesized through reaction of precipitated silica and antioxidant coupling agent which is synthesized by (3-glycidyloxypropyl)trimethoxysilane (A-187) and N-phenyl-1,4-phenylenediamine (PPDA). This antioxidant functionalized silica with different antioxidant content is then incorporated into styrene–butadiene rubber (SBR) to study their reinforcement and antioxidation effects. The tensile strength of these composites is much higher than that of neat silica/SBR, and increases with increasing antioxidant content. It is close to that of bis(triethoxysilylpropyl)tetrasulfane (TESPT) modified silica/SBR when the antioxidant content exceeds 3.9% (by weight to silica). Furthermore, SBR filled with antioxidant functionalized silica has greatly improved stability in thermal oxidative ageing and damp heat ageing.  相似文献   
66.
Nomex™ honeycomb core sandwich panels with a bolt insert were load tested and modeled. The objective was to predict the honeycomb local buckling load and to identify a Nomex™ honeycomb constituent material model. Sandwich specimens were subjected to bolt pull-out load tests. The same sandwich structure was also tested in flat-wise tension with strain gages installed on the honeycomb walls. Finite element models of the flat-wise tension and bolt pull-out tests were built. The honeycomb geometry and strain gages were modeled with shell elements. An orthotropic honeycomb material model was identified by comparing the two test models to the experimental data. The material parameters identified are in the mid-range of previously published values. The pull-out test model was used to predict honeycomb wall buckling with a nodal rotation vector sum criterion. The buckling loads predictions closely corresponded to the start of the experimental load/displacement slope transition zone.  相似文献   
67.
Motivated by the recently observed sublattice asymmetry of substitutional nitrogen impurities in CVD grown graphene, we show, in a mathematically transparent manner, that oscillations in the local density of states driven by the presence of substitutional impurities are responsible for breaking the sublattice symmetry. While these oscillations are normally averaged out in the case of randomly dispersed impurities, in graphene they have either the same, or very nearly the same, periodicity as the lattice. As a result, the total interaction energy of randomly distributed impurities embedded in the conduction-electron-filled medium does not vanish and is lowered when their configuration is sublattice-asymmetric. We also identify the presence of a critical concentration of nitrogen above which one should expect the sublattice asymmetry to disappear. This feature is not particular to nitrogen dopants, but should be present in other impurities.  相似文献   
68.
This paper presents the conceptual design of kenaf fiber polymer composites automotive parking brake lever using the integration of Theory of Inventive Problem Solving (TRIZ), morphological chart and Analytic Hierarchy Process (AHP) methods. The aim is to generate and select the best concept design of the component based on the product design specifications with special attention to incorporate the use of natural fiber polymer composites into the component design. In this paper, the TRIZ contradiction matrix and 40 inventive principles solution tools were applied in the early solution generation stage. The principle solution parameters for the specific design characteristics were later refined in details using the aid of morphological chart to systematically develop conceptual designs for the component. Five (5) innovative design concepts of the component were produced and AHP method was finally utilized to perform the multi-criteria decision making process of selecting the best concept design for the polymer composite automotive parking brake lever component.  相似文献   
69.
This paper investigates the self-healing repair of cracks in an epoxy/nanoclay nanocomposite using mendable poly[ethylene-co-methacrylic acid] (EMAA) particles. The effects of two different concentrations of EMAA agent on the self-healing efficiency were measured using single edge notch bar (SENB) testing. Inclusion of EMAA particles into the nanocomposite results an increase in the fracture strength and strain of the SENB specimens. Damaged SENBs were healed at 150 °C for 30 min to achieve up to 63% recovery in critical stress intensity and over 85% recovery in sustainable peak load. Also, X-ray diffraction (XRD) analysis and tensile test used in order to examine the nanocomposite structure and investigate the effects of EMAA inclusion on the nanocomposite mechanical properties. The pressure delivery mechanism of the healing agent is shown by scanning electron microscopy (SEM) images. It seems EMAA can be used as an effective self-healing agent for epoxy/nanoclay nanocomposites.  相似文献   
70.
Carbon Fiber Reinforced Polymers (CFRPs) have been increasingly employed for structural strengthening, and are attached to structures using bonding adhesives. The aim of this work is to characterize defects in the bond between CFRP and concrete (after they are located by pulse infrared thermography), and assign the defects a “numerical value” (ranging from 0 for a complete air–gap to 1 for a fully glued bond). Quantitative characterization is performed by measuring the thermal impedance, and then identifying the thermophysical parameters of the system through fitting the measured impedance to a theoretical model. An inversion procedure is carried out to estimate the unknown parameters, without prior knowledge of sample properties. In particular, it is possible to estimate more accurately both the amount of glue within a defect and the thermal contact resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号