首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1134篇
  免费   109篇
  国内免费   28篇
电工技术   1篇
综合类   8篇
化学工业   377篇
金属工艺   132篇
机械仪表   24篇
建筑科学   7篇
矿业工程   4篇
能源动力   170篇
轻工业   5篇
无线电   125篇
一般工业技术   315篇
冶金工业   64篇
原子能技术   14篇
自动化技术   25篇
  2024年   3篇
  2023年   144篇
  2022年   61篇
  2021年   59篇
  2020年   87篇
  2019年   73篇
  2018年   39篇
  2017年   75篇
  2016年   55篇
  2015年   107篇
  2014年   87篇
  2013年   69篇
  2012年   41篇
  2011年   44篇
  2010年   35篇
  2009年   21篇
  2008年   10篇
  2007年   25篇
  2006年   26篇
  2005年   11篇
  2004年   13篇
  2003年   15篇
  2002年   18篇
  2001年   24篇
  2000年   7篇
  1999年   11篇
  1998年   2篇
  1996年   3篇
  1995年   9篇
  1994年   9篇
  1993年   7篇
  1992年   6篇
  1991年   7篇
  1990年   6篇
  1989年   8篇
  1988年   18篇
  1987年   11篇
  1986年   5篇
  1985年   3篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   5篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
排序方式: 共有1271条查询结果,搜索用时 15 毫秒
11.
Serotonin (5‐hydroxytryptamine, HT), a neurotransmitter, and its main metabolite 5‐hydroxyindole‐3‐acetic acid (HIAA) are biomarkers for carcinoid tumors. They can be quantitatively detected by a new luminescent sensor based on a water stable lanthanide metal–organic framework (Ln‐MOF). This Ln‐MOF features a (3,4)‐connected topology containing 1D channels occupied by lattice water molecules. Luminescent studies reveal that high luminescence quenching efficiency occurs upon the addition of HT and HIAA. The Ln‐MOF also displays excellent sensitivity with fast response within 1 min, good reusability, and detection limits as low as 0.66 and 0.54 × 10?6m for HT and HIAA, respectively. In addition, the sensing function exhibits excellent selectivity even in the presence of other neurotransmitters and the main coexisting species in blood plasma and urine.  相似文献   
12.
《Organic Electronics》2014,15(8):1849-1855
The conductivity enhancement of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) by dynamic etching process was investigated to introduce the outstanding and simplest method for soft electronics. Four different samples which were pristine PEDOT:PSS, PEDOT:PSS doped with 5 wt.% DMSO, PEDOT:PSS with dipping process, and PEDOT:PSS with dynamic etching process were prepared to compare the properties such as conductivity, morphology, relative atomic percentage, and topography. All samples were characterized by four point probe, current atomic force microscopy (C-AFM), X-ray photoelectron spectroscopy (XPS), and UV–visible spectroscopy. The conductivity of the sample with dynamic etching process showed the highest value as 1299 S/cm among four samples. We proved that the dynamic etching process is superior to remove PSS phase from PEDOT:PSS film, to flow strong current through entire surface of PEDOT:PSS, and to show the smoothest surface (RMS 2.28 nm). XPS analysis was conducted for accurate chemical and structural surface environments of four samples and the relative atomic percentage of PEDOT in the sample with dynamic etching was the highest as 29.5%. The device performance of the sample with the dynamic etching process was outstanding as 10.31 mA/cm2 of Jsc, 0.75 eV of Voc, 0.46 of FF, and 3.53% of PCE. All properties and the device performance for PEDOT:PSS film by dynamic etching process were the most excellent among the samples.  相似文献   
13.
Nanocrystalline materials with superior properties are of great interest. Much is discussed about obtaining nanograins, but little is known about maintaining grain-size uniformity that is critical for reliability. An especially intriguing question is whether it is possible to achieve a size distribution narrower than what Hillert theoretically predicted for normal grain growth, a possibility suggested—for growth with a higher growth exponent—by the generalized mean-field theory of Lifshitz, Slyozov, Wagner (LSW), and Hillert but never realized in practice. Following a rationally designed two-step sintering route, it has been made possible in bulk materials by taking advantage of the large growth exponent in the intermediate sintering stage to form a uniform microstructure despite residual porosity, and freezing the grain growth thereafter while continuing densification to reach full density. The bulk dense Al2O3 ceramic thus obtained has an average grain size of 34 nm and a size distribution much narrower than Hillert's prediction. Bulk Al2O3 with a grain-size distribution narrower than the particle-size distribution of starting powders is also demonstrated, as are highly uniform bulk engineering metals (refractory Mo and W-Re alloy) and complex functional ceramics (BaTiO3-based alloys with superior dielectric strength and energy capacity).  相似文献   
14.
Triplet–triplet annihilation (TTA) for enhancement of luminous efficiency occurs with difficulty in exciplex-based organic light-emitting devices (OLEDs) because it is an interaction among several neighboring donor and acceptor molecules. However, TTA has been realized in our planar-heterojunction (PHJ) exciplex-based OLEDs by using a thin recombination zone to enhance the interfacial density of the triplet states. The TTA process, which is characterized by a high-field decrease (HFD) in the magneto-electroluminescence from the PHJ OLEDs, appears at approximately 150 K and becomes stronger with decreasing temperature. At a given temperature, the higher the injected current is, the stronger HFD is observed. Additionally, we find that TTA could even happens at room temperature with appropriate selection of the donor molecule, which may be attributed to the favorable electron-donating ability of the methoxy group (–OCH3) in the donor molecule and the matched overlaps of the intermolecular conformation of the donor and the acceptor.  相似文献   
15.
Antibacterial elements and non-contact heating abilities have been proven effective for antibacterial and antibiofilm activities, but it remains a challenge to integrate both within one material. Herein, assisted by the high-entropy effect, FeNiTiCrMnCux high-entropy alloy nanoparticles (HEA-NPs) with excellent photothermal heating properties for boosting antibacterial and antibiofilm performances are synthesized. Benefitting from the synergetic effect of copper ions released and thermal damage by the HEA-NPs, more reactive oxygen species (ROS) are generated, leading to the rupture of the cell membranes and the eradication of the biofilms. As a result, the antibiofilm efficiency (400 µg mL−1) of the mostly optimized FeNiTiCrMnCu1.0 HEA-NPs in the marine nutrient medium, which is the worst-case scenario for the antimicrobial material, can be improved from 81% to 97.4% under 30 min solar irradiation (1 sun). The present study demonstrates a new strategy for effectively treating marine microorganisms that cause biofouling and microbial corrosion using HEA-NPs with photothermal heating characteristics as an antibacterial auxiliary.  相似文献   
16.
Lithium (Li) metal anodes have been proposed as a promising candidate for high-energy-density electrode materials in secondary batteries. However, the dendrite growth and unstable electrode–electrolyte interfaces during Li plating/stripping are fatal to their practical applications. Herein, the construction of 3D porous Au/Cu nanoscaffold prepared via a convenient template-sacrificed hot fusion construction method and a nanoseed modification process as an effective Li metal hosting material are proposed. The Au/Cu nanoscaffold can spatially guide uniform deposition of Li metal free from the growth of Li dendrites due to the homogenous Li+ ion flux and negligible nucleation overpotential. Moreover, the Cu skeleton can relieve volume change and stabilize local current density during cycling processes. Benefiting from these advantages, the symmetric cells based on self-supported Li-filled Au/Cu (Li-Au/Cu) nanoscaffold electrodes present highly stable Li plating/stripping for more than 1000 h with a low voltage hysteresis less than 90 mV and a long lifespan over 1300 h at 1.0 mA cm–2 in carbonate-based electrolytes. Impressively, the Li-Au/Cu nanoscaffold||LiFePO4 full cells also exhibit exceptional cycling stability and rate performance. This work provides a promising strategy to construct dendrite-free lithium metal anodes toward high-performance lithium metal batteries.  相似文献   
17.
Energy bands, effective mass of carriers, absolute band edge positions and optical properties of tetragonal AgInS2 were calculated using a first-principles approach with the exchange correlation described by B3LYP hybrid functional. The results indicate that tetragonal AgInS2 has a direct band gap of 1.93 eV, which reproduce well experimental value. Calculated effective masses of electrons and holes are both small which are beneficial to separation and migration of electron and hole pairs. This implies that AgInS2 has good photocatalytic performance. The calculated optical characteristics indicate that AgInS2 has a slight anisotropy for both the real and imaginary parts of the dielectric function and exhibits large optical absorption in the visible light region. Furthermore, the calculated band edge positions in (100), (010) and (001) surfaces indicate that tetragonal AgInS2 is beneficial to the reduction and oxidation of water to hydrogen and oxygen under visible light irradiation.  相似文献   
18.
Mathematical models and associated numerical techniques have been developed to investigate the complicated transport phenomena in spot hybrid laser-MIG keyhole welding. A continuum formulation is used to handle solid phase, liquid phase, and the mushy zone during the melting and solidification processes. The volume of fluid (VOF) method is employed to handle free surfaces, and the enthalpy method is used for latent heat. Dynamics of weld pool fluid flow, energy transfer in keyhole plasma and weld pool, and interactions between droplets and weld pool are calculated as a function of time. The effect of droplet size on mixing and solidification is investigated. It is found that weld pool dynamics, cooling rate, and final weld bead geometry are strongly affected by the impingement process of the droplets in hybrid laser-MIG welding. Also, compositional homogeneity of the weld pool is determined by the competition between the rate of mixing and the rate of solidification.  相似文献   
19.
In this paper, the cleavage fracture behavior of a C–Mn vessel steel at various loading rates was studied by experiments and FEM calculations. The results show the cleavage fracture mechanism of this steel in two types of notched specimens loaded in two loading modes (four-point bending and three-point bending) at a temperature of −110 °C does not change with loading rates. This leads to the independence of the measured the local cleavage fracture stress σf and the macroscopic cleavage fracture stress σF on loading rate, notch geometry and loading mode. The macroscopic notch toughness characterized by the ratio of fracture load to general yield load (Pf/Pgy) of the notched specimens with two notch geometries loaded in the two loading modes at various loading rates can be predicated by the maximum normal stress criteria (σyymax?σF). The σF can be regarded as an engineering notch toughness parameter of materials, and may be used for assessing integrity of structures with notch defects by the criteria σyymax?σF. The σF values of steels can be simply measured by the Griffiths–Owen's notched specimens loaded in four-point bending or three-point bending at a test temperature and a loading rate.  相似文献   
20.
The main bottlenecks of aqueous rechargeable Ni–Zn batteries are their relatively low energy density and poor cycling stability, mainly arising from the low capacity and inferior reversibility of the current Ni‐based cathodes. Additionally, the complicated and difficult‐to‐scale preparation procedures of these cathodes are not promising for large‐scale energy storage. Here, a facile and cost‐effective ultrasonic‐assisted strategy is developed to efficiently activate commercial Ni foam as a robust cathode for a high‐energy and stable aqueous rechargeable Ni–Zn battery. 3D Ni@NiO core–shell electrode with remarkably boosted reactivity and an area of 300 cm2 is readily obtained by this ultrasonic‐assisted activation method (denoted as SANF). Benefiting from the in situ formation of electrochemically active NiO and porous 3D structure with a large surface area, the as‐fabricated SANF//Zn battery presents ultrahigh capacity (0.422 mA h cm?2) and excellent cycling durability (92.5% after 1800 cycles). Moreover, this aqueous rechargeable SANF//Zn battery achieves an impressive energy density of 15.1 mW h cm?3 (0.754 mW h cm?2) and a peak power density of 1392 mW cm?3, outperforming most reported aqueous rechargeable energy‐storage devices. These findings may provide valuable insights into designing large‐scale and high‐performance 3D electrodes for aqueous rechargeable batteries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号