首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7844篇
  免费   379篇
  国内免费   43篇
电工技术   41篇
综合类   10篇
化学工业   2800篇
金属工艺   525篇
机械仪表   76篇
建筑科学   57篇
矿业工程   55篇
能源动力   968篇
轻工业   255篇
水利工程   26篇
石油天然气   73篇
武器工业   1篇
无线电   774篇
一般工业技术   2082篇
冶金工业   163篇
原子能技术   72篇
自动化技术   288篇
  2024年   17篇
  2023年   468篇
  2022年   136篇
  2021年   267篇
  2020年   402篇
  2019年   282篇
  2018年   186篇
  2017年   472篇
  2016年   401篇
  2015年   370篇
  2014年   531篇
  2013年   428篇
  2012年   315篇
  2011年   311篇
  2010年   333篇
  2009年   367篇
  2008年   185篇
  2007年   381篇
  2006年   334篇
  2005年   213篇
  2004年   129篇
  2003年   172篇
  2002年   180篇
  2001年   180篇
  2000年   92篇
  1999年   141篇
  1998年   86篇
  1997年   43篇
  1996年   65篇
  1995年   59篇
  1994年   41篇
  1993年   32篇
  1992年   19篇
  1991年   33篇
  1990年   35篇
  1989年   44篇
  1988年   56篇
  1987年   137篇
  1986年   111篇
  1985年   36篇
  1984年   37篇
  1983年   19篇
  1982年   26篇
  1981年   24篇
  1980年   15篇
  1979年   18篇
  1978年   10篇
  1977年   6篇
  1976年   5篇
  1975年   6篇
排序方式: 共有8266条查询结果,搜索用时 15 毫秒
101.
Spatially resolved extrinsic photoresponse experiments in pentacene two terminal devices without or under additional intrinsic bias-light excitation are employed. These experiments are used to investigate the microscopic mechanism of the recently observed phenomenon of the photoresponse enhancement under additional bias-light intrinsic excitation and to preclude that this phenomenon arises from contact-related artifacts. It is found that the extrinsic photogeneration near the contacts via electric field-assisted exciton splitting and/or light-induced depletion width-reduction have a negligible contribution to the extrinsic photoresponse. Under additional bias-light intrinsic excitation, a uniform increase of the photogenerated hole density is found to take place across the whole conduction channel, without changes in the electric field distribution and in the interfacial properties of the contacts. The photoresponse enhancement by the blue bias-light becomes stronger upon increasing the red-light intensity. A nearly square root dependence of the photoresponse enhancement on the blue bias-light intensity is found. It is shown that the observed dependence of the photoresponse enhancement on the light intensities of the extrinsic and intrinsic excitation can be explained with the extrinsic photogeneration mechanism based on hole detrapping by triplet exciton dissociation.  相似文献   
102.
Mucogingival surgery has become a common procedure for soft gingival tissue reparation in dental clinical practice, which mainly relies on autograft or commercial collagen membranes (CM). However, the autograft faces grand challenges in source availability and long-term post-surgery pain management, and the CM is restricted by its poor mechanical properties in an aqueous environment. Here, it is reported that a bio-inspired lamellar chitosan scaffold (LCS) with long range ordered porous structure, manufactured through a bidirectional freezing method, can serve as a promising gingival tissue engineering material. The LCS not only exhibits excellent mechanical properties in the hydrated state but also accelerates vessel formation and soft tissue regeneration in vivo. Most interestingly, the LCS is found to be capable of inducing macrophage differentiation to M2 macrophages, which is thought to play an important role in tissue regeneration. These advantages combined with its easy and low-cost preparation process make the LCS a promising candidate for dental clinical applications.  相似文献   
103.
Two novel D–A–π–A metal free dyes with triphenylamine as donor, dithiophene-diketo-pyrrolo-pyrrole as acceptor unit, thiophene and phenyl π-conjugated bridges and a cyanoacetic acid as electron acceptor (TDPP1 and TDPP2 were denoted for thiophene and phenyl π-conjugated bridge, respectively) have been designed and used as sensitizers for DSSCs. Incorporation of dithiophene-diketo-pyrrolo-pyrrole, reduces the band gap significantly. The influence of π-conjugated bridge on optical and electrochemical properties were investigated. Results demonstrated that the absorption band of TDPP with thiophene π-conjugated bridge has red shifted due to the enhancement of electron donating ability of π-conjugated bridge. The DSSC based on TDPP1 shows prominent power conversion efficiency about 4.81%, which is higher that for TDPP2 (3.42%). The electrochemical impedance spectroscopy analysis reveal that the charge recombination resistance at the TiO2/dye/electrolyte interface for the DSSC based on TDPP1 is higher than that for TDPP2, which improves both Jsc and Voc. The PCE of the DSSC based on TDPP1 is further improved up to 6.34%, when deoxycholic acid (DCA) was employed as coadsorbant.  相似文献   
104.
Aqueous rechargeable zinc-ion batteries (ZIBs) have attracted considerable attention as a promising candidate for low-cost and high-safety electrochemical energy storage. However, the advancement of ZIBs is strongly hindered by the sluggish ionic diffusion and structural instability of inorganic metal oxide cathode materials during the Zn2+ insertion/extraction. To address these issues, a new organic host material, poly(2,5-dihydroxy-1,4-benzoquinonyl sulfide) (PDBS), has been designed and applied for zinc ion storage due to its elastic structural factors (tunable space and soft lattice). The aqueous Zn-organic batteries based on the PDBS cathode show outstanding cycling stability and rate capability. The coordination moieties (O and S) display the strong electron donor character during the discharging process and can act as the coordination arms to host Zn2+. Also, under the electrochemical environment, the malleable polymer structure of PDBS permits the rotation and bending of polymer chains to facilitate the insertion/extraction of Zn2+, manifesting the superiority and uniqueness of organic electrode materials in the polyvalent cation storage. Finally, quasi-solid-state batteries based on aqueous gel electrolyte demonstrate highly stable capacity under different bending conditions.  相似文献   
105.
Substitution of liquid electrolyte with solid-state electrolytes (SSEs) has emerged as a very urgent and challenging research area of rechargeable batteries. NASICON (Na3Zr2Si2PO12) is one of the most potential SSEs for Na-ion batteries due to its high ionic conductivity and low thermal expansion. It is proven that the ionic conductivity of NASICON can be improved to 10−3 S cm−1 by Sc-doping, of which the mechanism, however, has not been fully understood. Herein, a series of Na3+xScxZr2−xSi2PO12 (0 ≤ x  ≤  0.5) SSEs are prepared. To gain a deep insight into the ion transportation mechanism, synchrotron-based X-ray absorption spectroscopy (XAS) is employed to characterize the electronic structure, and solid-state nuclear magnetic resonance (SS-NMR) is used to analyze the dynamics. In this study, Sc is successfully doped into Na3Zr2Si2PO12 to substitute Zr atoms. The redistribution of sodium ions at certain specific sites is proven to be critical for sodium ion movement. For x ≤ 0.3, the promotion of sodium ion movement is attributed to sodium ion concentration increase at the Na2 sites and decrease at the Na1 and Na3 sites. For x > 0.3, the inhibition of sodium ion movement is due to the phase change from monoclinic to rhombohedral and an increasing impurity content.  相似文献   
106.
Integration of 2D membranes into 3D macroscopic structures is essential to overcome the intrinsically low stretchability of graphene for the applications in flexible and wearable electronics. Herein, the synthesis of 3D graphene films (3D‐GFs) using chemical vapor deposition (CVD) is reported, in which a porous copper foil (PCF) is chosen as a template in the atmospheric‐pressure CVD preparation. When the 3D‐GF prepared at 1000 °C (noted as 3D‐GF‐1000) is transferred onto a polydimethylsiloxane (PDMS) membrane, the obtained 3D‐GF‐1000/PDMS hybrid film shows an electrical conductivity of 11.6 S cm?1 with good flexibility, indicated by small relative resistance changes (ΔR/R0) of 2.67 and 0.36 under a tensile strain of 50% and a bending radius of 1.6 mm, respectively. When the CVD temperature is reduced to 900 °C (generating a sample noted as 3D‐GF‐900), the 3D‐GF‐900/PDMS hybrid film exhibits an excellent strain‐sensing performance with a workable strain range of up to 187% and simultaneously a gauge factor of up to ≈1500. The 3D‐GF‐900/PDMS also shows a remarkable durability in resistance in repeated 5000 stretching‐releasing cycles. Kinetics studies show that the response of ΔR/R0 upon strain is related to the graphitization and conductivity of 3D‐GF which are sensitive to the CVD preparation temperature.  相似文献   
107.
Conducting channel formation in organic field‐effect transistors (OFETs) is considered to happen in the organic semiconductor layer very close to the interface with the gate dielectric. In the gradual channel approximation, the local density of accumulated charge carriers varies as a result of applied gate bias, with the majority of the charge carriers being localized in the first few semiconductor monolayers close to the dielectric interface. In this report, a new concept is employed which enables the accumulation of charge carriers in the channel by photoinduced charge transfer. An OFET employing C60 as a semiconductor and divinyltetramethyldisiloxane‐bis(benzocyclobutene) as the gate dielectric is modified by a very thin noncontinuous layer of zinc‐phthalocyanine (ZnPc) at the semiconductor/dielectric interface. With this device geometry, it is possible to excite the phthalocyanine selectively and photogenerate charges directly at the semiconductor/dielectric interface via photoinduced electron transfer from ZnPc onto C60. Thus the formation of a gate induced and a photoinduced channel in the same device can be correlated.  相似文献   
108.
Hierarchical nanocomposites rationally designed in component and structure, are highly desirable for the development of lithium‐ion batteries, because they can take full advantages of different components and various structures to achieve superior electrochemical properties. Here, the branched nanocomposite with β‐MnO2 nanorods as the back‐bone and porous α‐Fe2O3 nanorods as the branches are synthesized by a high‐temperature annealing of FeOOH epitaxially grown on the β‐MnO2 nanorods. Since the β‐MnO2 nanorods grow along the four‐fold axis, the as‐produced branches of FeOOH and α‐Fe2O3 are aligned on their side in a nearly four‐fold symmetry. This synthetic process for the branched nanorods built by β‐MnO2/α‐Fe2O3 is characterized. The branched nanorods of β‐MnO2/α‐Fe2O3 present an excellent lithium‐storage performance. They exhibit a reversible specific capacity of 1028 mAh g?1 at a current density of 1000 mA g?1 up to 200 cycles, much higher than the building blocks alone. Even at 4000 mA g?1, the reversible capacity of the branched nanorods could be kept at 881 mAh g?1. The outstanding performances of the branched nanorods are attributed to the synergistic effect of different components and the hierarchical structure of the composite. The disclosure of the correlation between the electrochemical properties and the structure/component of the nanocomposites, would greatly benefit the rational design of the high‐performance nanocomposites for lithium ion batteries, in the future.  相似文献   
109.
Sputter deposited molybdenum (Mo) thin films are used as back contact layer for Cu(In1−xGax)(Se1−ySy)2 based thin film solar cells. Desirable properties of Mo films include chemical and mechanical inertness during the deposition process, high conductivity, appropriate thermal expansion coefficient with contact layers and a low contact resistance with the absorber layer. Mo films were deposited over soda-lime glass substrates using DC-plasma magnetron sputtering technique. A 23 full factorial design was made to investigate the effect of applied power, chamber pressure, and substrate temperature on structural, morphological, and electrical properties of the films. All the films were of submicron thickness with growth rates in the range of 34–82 nm/min and either voided columnar or dense growth morphology. Atomic force microscope studies revealed very smooth surface topography with average surface roughness values of upto 17 nm. X-ray diffraction studies indicated, all the films to be monocrystalline with (001) orientation and crystallite size in the range of 4.6–21 nm. The films exhibited varying degrees of compressive or tensile residual stresses when produced at low or high chamber pressure. Low pressure synthesis resulted in film buckling and cracking due to poor interfacial strength as characterized by failure during the tape test. Measurement of electrical resistivity for all the films yielded a minimum value of 42 μΩ cm for Mo films deposited at 200 W DC power.  相似文献   
110.
《Food chemistry》1999,66(3):339-343
A low-tannin sorghum cultivar M-35-1 was used in this study. Sorghum was germinated for 6 days and protease and amylase activities were measured every 24 h. Results showed that the 5th day germinated sorghum had a higher protease activity and a lower amylase activity. Sorghum flour was incubated for 30 min with the extract from germinated sorghum or with 0.01, 0.05 or 0.1 mg ml−1 papain or trypsin prior to cooking in water. Results showed increase in in vitro protein digestibility (IVPD) with the 5th day germination extract. Pretreatment of sorghum flour with small amounts of papain or trypsin (0.01 mg ml−1) improved the IVPD without affecting the paste viscosity, whereas the germinated sorghum extract led to very low paste viscosity. ©  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号