首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60402篇
  免费   4150篇
  国内免费   1828篇
电工技术   1106篇
综合类   4409篇
化学工业   7146篇
金属工艺   6709篇
机械仪表   11528篇
建筑科学   1224篇
矿业工程   1620篇
能源动力   7081篇
轻工业   1646篇
水利工程   170篇
石油天然气   997篇
武器工业   462篇
无线电   2593篇
一般工业技术   10726篇
冶金工业   1516篇
原子能技术   305篇
自动化技术   7142篇
  2024年   158篇
  2023年   2083篇
  2022年   1986篇
  2021年   2164篇
  2020年   2821篇
  2019年   2142篇
  2018年   1667篇
  2017年   2387篇
  2016年   2705篇
  2015年   3217篇
  2014年   4094篇
  2013年   4629篇
  2012年   5574篇
  2011年   5111篇
  2010年   3867篇
  2009年   3990篇
  2008年   1906篇
  2007年   3218篇
  2006年   2967篇
  2005年   1404篇
  2004年   619篇
  2003年   708篇
  2002年   796篇
  2001年   752篇
  2000年   522篇
  1999年   586篇
  1998年   313篇
  1997年   223篇
  1996年   258篇
  1995年   239篇
  1994年   195篇
  1993年   209篇
  1992年   155篇
  1991年   182篇
  1990年   168篇
  1989年   158篇
  1988年   283篇
  1987年   614篇
  1986年   527篇
  1985年   185篇
  1984年   56篇
  1983年   50篇
  1982年   55篇
  1981年   55篇
  1980年   51篇
  1979年   59篇
  1978年   36篇
  1977年   33篇
  1976年   40篇
  1974年   46篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
11.
An electrolyte Equation of State is presented by combining the Cubic Plus Association Equation of State,Mean Spherical Approximation and the Born equation.This new model uses experimental relative static permittivity,intend to predict well the activity coefficients of individual ions (ACI) and liquid densities of aqueous solutions.This new model is applied to model water + NaCl binary system and water + gas +NaCl ternary systems.The cation/anion-water interaction parameters of are obtained by fitting the exper-imental data of ACI,mean ionic activity coefficients (MIAC) and liquid densities of water + NaCl binary system.The cation/anion-gas interaction parameters are obtained by fitting the experimental data of gas solubilities in aqueous NaCl solutions.The modeling results show that this new model can correlate well with the phase equilibrium and volumetric properties.Without gas,predictions for ACI,MIAC,and liquid densities present relative average deviations of 1.3%,3.6% and 1.4% compared to experimental ref-erence values.For most gas-containing systems,predictions for gas solubilities present relative average deviations lower than 7.0%.Further,the contributions of ACI,and salting effects of NaCl on gases are ana-lyzed and discussed.  相似文献   
12.
《Ceramics International》2022,48(1):744-753
The heat-resistance of the Cansas-II SiC/CVI-SiC mini-composites with a PyC and BN interface was studied in detail. The interfacial shear strength of the SiC/PyC/SiC mini-composites decreased from 15 MPa to 3 MPa after the heat treatment at 1500 °C for 50 h, while that of the SiC/BN/SiC mini-composites decreased from 248 MPa to 1 MPa, which could be mainly attributed to the improvement of the crystallization degree of the interface and the decomposition of the matrix. Aside from the above reasons, the larger declined fraction of the interfacial shear strength of the SiC/BN/SiC mini-composites might also be related to the gaps in the BN interface induced by the volatilization of B2O3·SiO2 phase, leading to a significant larger declined fraction of the tensile strength of the SiC/BN/SiC mini-composites due to the obvious expansion of the critical flaws on the fiber surface. Therefore, compared with the CVI BN interface, the CVI PyC interface has better heat-resistance at high temperatures up to 1500 °C due to the fewer impurities in PyC.  相似文献   
13.
In this present work, the effect of lanthanum oxides (La2O3) on the thermal cycle behavior of TBC coatings and mechanical properties such as adhesion strength and microhardness of 8% Yttria Stabilized Zirconia (8YSZ) TBCs were investigated. CoNiCrAlY and aluminium alloy (Al–13%Si) were used as bond coat and substrate materials. 8YSZ and different wt % of La2O3 (10, 20, and 30%) top coatings were applied using the atmospheric plasma spray (APS) method. The thermal cycling test for TBC coated samples were conducted at 800 °C in the electric furnace. The XRD pattern shows that the La2O3 doped 8YSZ material transformed to cubic pyrochloric structured La2Zr2O7 during thermal cycling. Further, the Taguchi-based grey relation analysis (GRA) method was applied to optimize the TBC coating parameters to achieve better mechanical properties such as adhesion strength and microhardness. And the optimized La2O3/8YSZ TBC coating was coated on CRDI engine combustion chamber components. The engine was tested with microalgae biodiesel and hydrogen, and the results were promising for the TBC-coated engine. The engine performance increased while using La2O3/8YSZ coated components, and the emissions from engine exhaust gas such as CO, HC, and smoke reduced considerably. It was found that there was no separation crack and spallation of the coating layer in the microstructure. Ultimately, the microstructural analysis of the optimized TBC coated piston sample after 50 h of running in the diesel engine confirmed that the developed coating had a superior thermal insulation effect and longer life.  相似文献   
14.
To reduce the energy consumption of the shrimp blanching process and improve the economic value of the blanched product, a transcritical CO2 heat pump blanching system (THPB system) was designed in this paper. The trends of astaxanthin were investigated at atmospheric pressure near boiling temperature, combined with the color and structural properties of shrimp samples, and the optimal blanching times of 270 s and 240 s were obtained at 90°C and 95°C, respectively. In contrast to the fuel blanching system (FB system) at 100°C, the annual standard coal consumption of the THPB system with 90°C blanching is decreased by 79%, and the annual operating cost can be saved by CNY 63,800, with a payback period of about 3.13 years.Industrial relevanceBlanching is one of the effective ways to prolong the shelf life of shrimp. However, the research on the blanching time and temperature of shrimp is not comprehensive. In addition, the traditional fuel blanching process has high energy consumption and pollution, and can no longer meet the quality requirements of the modern food processing industry. Heat pump has been shown to have better performance in food drying, but it is less used in blanching. The information presented in this study may provide other insights into food processing.  相似文献   
15.
Ni-based alloys are believed to be the most suitable brazing fillers for SiC ceramic application in a nuclear environment. However, graphite, which severely deteriorates the mechanical property of the joint, is inevitable when Ni reacts with SiC. In this paper, Different amounts of Zr powders are mixed with Inconel 625 powders to braze SiC at 1400 °C. When Zr addition reaches 40 wt%, the brazed seam confirms the absence of graphite. This research proves that Zr can avoid the graphite’s formation by suppressing Ni’s activity. The room-temperature shear strength of the joint with graphite’s absence is tested to be 81.97 MPa, which is almost three times higher than that of the joint with graphite. The interfacial reaction process and mechanism of the SiC joint are investigated and explained in this paper using thermodynamic calculations.  相似文献   
16.
Hydrogen as an energy carrier can play a significant role in reducing environmental emissions if it is produced from renewable energy resources. This research aims to assess hydrogen production from wind energy considering environmental, economic, and technical aspect for the East Azerbaijan province of Iran. The economic assessment is performed by calculation of payback period, levelized cost of hydrogen, and levelized cost of electricity. Since uncertainty in the power output of wind turbines may affect the payback period, all calculations are performed for four different turbine degradation rates. While it is common in the literature to choose the wind turbine based on a single criterion, this study implements Multi-Criteria Decision-Making (MCDM) techniques for this purpose. The results of Step-wise Weight Assessment Ratio Analysis illustrates that economic issue is the most important criterion for this research. The results of Weighted Aggregated Sum Product Assessment shows that Vestas V52 is the most suitable wind turbine for Ahar and Sarab cities, while Eovent EVA120 H-Darrieus is a better choice for other stations. The most suitable location for wind power generation is found to be Ahar, where it is estimated to annually generate 2914.8 kWh of electricity at the price of 0.045 $/kWh, and 47.2 tons of hydrogen at the price of 1.38 $/kg, which result in 583 tons of CO2 emission reduction.  相似文献   
17.
This paper focuses on the configuration design of flexure hinges with a prescribed compliance matrix and preset rotational center position. A new method for the topology optimization of flexure hinges is proposed based on the adaptive spring model and stress constraint. The hinge optimization model is formulated by maximizing the bending displacement with a spring while optimizing the compliance matrix to a prescribed value. To avoid numerical instability, an artificial spring is used as an auxiliary calculation, and a new strategy is developed for adaptively adjusting the spring stiffness according to the prescribed compliance matrix. The maximum stress of flexure hinge is limited by using a normalized P-norm of the effective von Mises stress, and a position constraint of rotational center is proposed to predetermine the position of the rotational center. In addition, to reduce the error of the stress measurement, a simple but effective filtering method is presented to obtain a complete black-and-white design. Numerical examples are used to verify the proposed method. Topology results show that the obtained flexure hinges have the prescribed compliance matrix and preset rotational center position while also meeting the stress requirements.  相似文献   
18.
In this paper, a salinity gradient solar pond (SGSP) is used to harness the solar energy for hydrogen production through two cycles. The first cycle includes an absorption power cycle (APC), a proton exchange membrane (PEM) electrolyzer, and a thermoelectric generator (TEG) unit; in the second one, an organic Rankine cycle (ORC) with the zeotropic mixture is used instead of APC. The cycles are analyzed through the thermoeconomic vantage point to discover the effect of key decision variables on the cycles’ performance. Finally, NSGA-II is used to optimize both cycles. The results indicate that employing ORC with zeotropic mixture leads to a better performance in comparison to utilizing APC. For the base mode, unit cost product (UCP), exergy, and energy efficiency when APC is employed are 59.9 $/GJ, 23.73%, and 3.84%, respectively. These amounts are 47.27 $/GJ, 29.48%, and 5.86% if ORC with the zeotropic mixture is utilized. The APC and ORC generators have the highest exergy destruction rate which is equal to 6.18 and 10.91 kW. In both cycles, the highest investment cost is related to the turbine and is 0.8275 $/h and 0.976 $/h for the first and second cycles, respectively. In the optimum state the energy efficiency, exergy efficiency, UCP, and H2 production rate of the system enhances 42.44%, 27.54%,15.95%, and 38.24% when ORC with the zeotropic mixture is used. The maximum H2 production is 0.47 kg/h, and is obtained when the mass fraction of R142b, LCZ temperature, pumps pressure ratio, generator bubble point temperature are 0.603, 364.35 K, 2.12, 337.67 K, respectively.  相似文献   
19.
杨立宁  郑东昊  王立新  杨光 《化工进展》2022,41(11):5961-5967
以具有轻质高强优异性能的蜻蜓翅脉结构为设计灵感,在分析翅脉网格结构抗冲击原理的基础上,设计了传统和仿生两类对比结构。采用熔融挤出3D打印机成功制备了具有不同结构的连续碳纤维增强聚乳酸复合材料试样,并对不同结构复合材料试样的拉伸性能和抗冲击性能进行了测试和对比分析。研究分析结果表明:由于拉伸力方向上的连续碳纤维含量相对较少,限制了仿生结构复合材料抗拉强度的提高,但仿生结构的平均抗拉强度为传统结构的1.18倍;当仿生结构复合材料试样受到冲击力时,其内部六边形结构的连接角度会发生变化,从而极大消耗冲击能量,同时具有六边形网格结构的连续碳纤维可以有效阻碍裂纹的扩展,因此仿生结构的平均冲击韧性可以达到传统结构的2.46倍;仿生蜻蜓翅脉结构可以显著提高增材制造复合材料的综合力学性能,且对于抗冲击性能的提高具体突出效果。连续碳纤维增强树脂基复合材料的有效可行的仿生蜻蜓翅脉结构设计和增材制造,可极大扩展其在高冲击载荷领域中的相应应用。  相似文献   
20.
《Ceramics International》2022,48(15):21600-21609
Stereolithography (SL) shows advantages for preparing alumina-based ceramics with complex structures. The effects of the particle size distribution, which strongly influence the sintering properties in ceramic SL, have not been systematically explored until now. Herein, the influence of the particle size distribution on SL-manufactured alumina ceramics was investigated, including bending strength at room temperature, post-sintering shrinkage, porosity, and microstructural morphology. Seven particle size distributions of alumina ceramics were studied (in μm/μm: 30/5, 20/3, 10/2, 5/2, 5/0.8, 3/0.5, and 2/0.3); a coarse:fine particle ratio of 6:4 was maintained. At the same sintering temperature, the degree of sintering was greater for finer particle sizes. The particle size distribution had a larger influence on flexural strength, porosity and shrinkage than sintering temperature when the particle size distribution difference reached 10-fold but was weaker for 10 μm/2 μm, 5 μm/2 μm and 5 μm/0.8 μm. The sintering shrinkage characteristics of cuboid samples with different particle sizes were studied. The use of coarse particles influenced the accuracy of small-scale samples. When the particle size was comparable to the sample width, such as 30 μm/5 μm and 5 mm, the width shrinkage was consistent with the height shrinkage. When the particle size was much smaller than the sample width, such as 2 μm/0.3 μm and 5 mm, the width shrinkage was consistent with the length shrinkage. The results of this study provide meaningful guidance for future research on applications of SL and precise control of alumina ceramics through particle gradation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号