首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   609篇
  免费   1篇
  国内免费   6篇
电工技术   7篇
综合类   2篇
化学工业   177篇
金属工艺   68篇
机械仪表   24篇
建筑科学   16篇
能源动力   47篇
轻工业   25篇
水利工程   4篇
石油天然气   1篇
无线电   19篇
一般工业技术   165篇
冶金工业   28篇
原子能技术   16篇
自动化技术   17篇
  2023年   6篇
  2022年   7篇
  2021年   6篇
  2020年   10篇
  2019年   18篇
  2018年   6篇
  2017年   11篇
  2016年   14篇
  2015年   16篇
  2014年   36篇
  2013年   41篇
  2012年   33篇
  2011年   61篇
  2010年   31篇
  2009年   49篇
  2008年   31篇
  2007年   33篇
  2006年   29篇
  2005年   32篇
  2004年   20篇
  2003年   39篇
  2002年   20篇
  2001年   15篇
  2000年   13篇
  1999年   18篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1988年   3篇
  1987年   4篇
  1986年   4篇
  1985年   1篇
排序方式: 共有616条查询结果,搜索用时 93 毫秒
71.
72.
73.
The effects of heat loss on the burning velocity of cellular premixed flames are investigated by two-dimensional unsteady calculations of reactive flows based on the compressible Navier-Stokes equation and on the diffusive-thermal model equation. Hydrodynamic and diffusive-thermal instabilities are taken into account as contributing to the intrinsic instability of premixed flames. A sufficiently small disturbance is superimposed on a planar flame to obtain the relation between the growth rate and the wavenumber, i.e., the dispersion relation. As the heat loss becomes larger, the growth rate decreases and the unstable range narrows. This is because hydrodynamic instability caused by thermal expansion weakens for nonadiabatic flames. To investigate the characteristics of cellular flames, the disturbance with the linearly most unstable wavenumber, i.e., the critical wavenumber, is superimposed. As the superimposed disturbance evolves, the cellular-flame front forms due to the intrinsic instability. The lateral movement of cellular flames is observed at low Lewis numbers, and the behavior of cellular-flame fronts becomes more unstable for nonadiabatic flames. As the heat-loss parameter increases, the burning velocity of a cellular flame normalized by that of a planar flame increases at Lewis numbers lower than unity. By contrast, when the Lewis number is not less than unity, the burning-velocity increment decreases by increasing the heat loss. Diffusive-thermal instability thus has a pronounced influence on the unstable behavior and burning velocity of nonadiabatic cellular flames.  相似文献   
74.
Imprint specific process parameters like the residual layer thickness and the etch resistance of the UV polymers for the substrate etch process have to be optimized to introduce UV nanoimprint lithography (UV NIL) as a high-resolution, low-cost patterning technique for research and industry into electron device manufacturing. Additionally, UV NIL processes have to be compatible with conventional silicon (Si) semiconductor processing. Within this work, the minimization of the residual layer thickness by using a multi-drop ink-jet system, which was integrated into the imprint stepper NPS300 from S-E-T-(formerly SUSS MicroTec), in combination with a low viscous UV polymer from Asahi Glass Company is shown. The etch resistance of different UV polymers against the poly-Si etch process was increased by 50% with an appropriate post-exposure bake. A poly-Si dry etch process was used to pattern the gates of short channel MOSFETs. After optimizing the poly-Si etch, properly working short channel MOSFETs with a minimum gate length of about 90 nm were fabricated demonstrating successfully the compatibility of UV NIL with conventional Si semiconductor processing on nanosized scale.  相似文献   
75.
This paper reviews the synthesis and characterization of several transparent glass-ceramics with optical active nanocrystals. Glass-ceramics containing ferroelectric SrxBa1-xNb2O6 nanocrystals with an ellipsoidal shape show optical phase modulations in the presence of alternative electric fields. In the glass-ceramics with Ba2TiSi2O8 (BTS) nanocrystals, BTS crystalline layers with a thickness of approximately 120 nm are formed at the surface and ellipsoidal-shaped crystallites with a diameter of 100–200 nm are dispersed in the glass matrix. Some TeO2-based and GeO2-based glasses show a prominent nanocrystallization. RE-doped CaF2 nanocrystals are patterned in a spatially selected region by laser irradiations. The size, morphology, and dispersion state of nanocrystals should be carefully checked in each glass system and composition. The basic concept for the design of glass system and composition is also discussed. Some data on optical active performances in transparent glass-ceramics with nanocrystals were introduced.  相似文献   
76.
77.
78.
Chlorinated organophosphate ester (OPE)-degrading enrichment cultures were obtained using tris(2-chloroethyl) phosphate (TCEP) or tris(1,3-dichloro-2-propyl) phosphate (TDCPP) as the sole phosphorus source. In cultures with 46 environmental samples, significant TCEP and TDCPP degradation was observed in 10 and 3 cultures, respectively, and successive subcultivation markedly increased their degradation rates. 67E and 45D stable enrichment cultures obtained with TCEP and TDCPP, respectively, completely degraded 20 muM of the respective compounds within 6 h and also the other, although the degradation rate of TCEP by 45D was relatively slow. We confirmed chloride ion generation on degradation in both cases and the generation of 2-chloroethanol (2-CE) and 1,3-dichloro-2-propanol (1,3-DCP) as metabolites of TCEP and TDCPP, respectively. 67E and 45D also showed dehalogenation ability toward 2-CE and 1,3-DCP, respectively. Addition of inorganic phosphate did not significantly influence their ability to degrade the chlorinated OPEs but markedly increased their dehalogenation ability, which was maximum at 0.2 mM of inorganic phosphate and decreased at a higher concentration. Denaturing gradient gel electrophoresis analysis showed that dominant bacteria in 67E are related to Acidovorax spp. and Sphingomonas spp. and those in 45D are Acidovorax spp., Aquabacterium spp., and Sphingomonas spp. This analysis indicated the relationship of the Sphingomonas- and Acidovorax-related bacteria with the cleavage of the phosphoester bond and dehalogenation, respectively, in both cultures. This is the first report on bacterial enrichment cultures capable of degrading both TCEP and TDCPP.  相似文献   
79.
We present a simple method of variable temperature process that can potentially enhance the hydrogen storage properties of a large variety of solid state materials. In this approach, hydrogen gas is first introduced at about room temperature, which is followed by a gradual increase to a preset maximum temperature value, Tmax. Using this approach, we investigated hydrogen absorption properties of vertically aligned arrays of magnesium nanotrees and nanoblades fabricated by glancing angle deposition (GLAD) technique, and conventional Mg thin film. Weight percentage (wt%) storage values were measured by quartz crystal microbalance (QCM). After exposing Mg samples to H2 at 30 bar and 30 °C, dynamic absorption measurements were conducted as the temperature was increased from 30 °C to maximum values of Tmax = 100, 200, and 300 °C all within 150 min. QCM measurements revealed that variable temperature method results in significant improvements in hydrogen storage values over the ones obtained by conventional constant temperature process. At a low effective temperature Teff = 165 °C (Tmax = 300 °C), we achieved storage values of 6.19, 4.76, and 2.79 wt% for Mg nanotrees, nanoblades, and thin film, respectively.  相似文献   
80.
Radiation-catalysis is a well-known process leading to H2 production through radiolysis of adsorbed water on oxides. In this article, we show that common, easily accessible, hydroxides can be as much efficient for H2 production as the more efficient oxide identified until now.H2 radiolytic yields were determined from the same nanostructured hydrated samples that differ by their particle size (AlOOH L and AlOOH S for large and small particle size, respectively). The measured yields are of the order of 10−8 mol J−1. It means that such an irradiated material produces more efficiently H2 than an equivalent mass of water. H radicals, trapped electrons (F centers), and related O centers were identified by electron paramagnetic resonance (EPR), at room and low temperature. Adsorbed water seems to play a role in the secondary processes of radical recombination, allowing a very efficient H2 production in these systems. This raises interesting questions about the energy transfer mechanism underlying this efficient hydrogen production and provide design lines for the design of efficient radiation-catalytic materials for H2 production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号