首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   196篇
  免费   23篇
  国内免费   1篇
电工技术   1篇
综合类   1篇
化学工业   57篇
金属工艺   42篇
机械仪表   6篇
建筑科学   1篇
矿业工程   2篇
能源动力   5篇
水利工程   2篇
无线电   17篇
一般工业技术   56篇
冶金工业   13篇
原子能技术   7篇
自动化技术   10篇
  2023年   9篇
  2022年   16篇
  2021年   6篇
  2020年   8篇
  2019年   3篇
  2018年   11篇
  2017年   12篇
  2016年   11篇
  2015年   8篇
  2014年   15篇
  2013年   14篇
  2012年   19篇
  2011年   8篇
  2010年   18篇
  2009年   9篇
  2008年   7篇
  2007年   4篇
  2006年   4篇
  2005年   1篇
  2004年   4篇
  2003年   4篇
  2002年   1篇
  2001年   5篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1987年   3篇
  1986年   1篇
  1984年   3篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有220条查询结果,搜索用时 0 毫秒
101.
Short fiber reinforced composites inherently have fiber length distribution (FLD) and fiber orientation distribution (FOD), which are important factors in determining mechanical properties of the composites. Since the internal structure has a direct effect on the mechanical properties of the composites, a Micro-CT was used to observe the three dimensional structure of fibers in the composites and to acquire FLD and FOD. It was successful to investigate FLD, FOD, and fiber orientation states and to predict the elastic modulus of the hybrid system. Since hybrid composites used in this study consist of three phases of particles, glass fibers, and matrix, theoretical hybrid modeling is required to consider reinforcing effects of both particles and glass fibers. Interaction between the particles and matrix was considered by using a perturbed stress–strain theory, the Tandon–Weng model. In addition, the laminating analogy approach (LAA) was used to predict the overall elastic modulus of the composite. Theoretical prediction of hybrid moduli indicated that there was a possibility of poor adhesion between glass fibers and matrix. The poor interfacial adhesion was confirmed by morphological experiments. This theoretical and experimental platform is expected to provide more insightful understanding on any kinds of multiphased hybrid composites.  相似文献   
102.
In recent years, for automotive applications, the need for new advanced high-strength sheet steels (AHSSs) with high ductility has rapidly increased. This is mainly related to the need for more fuel-efficient (and therefore more environmentally friendly) cars, and the increasing consumer demand for safer vehicles. In this research, the transformation-induced plasticity (TRIP) that accompanies the mechanically induced martensitic transformation (MIMT) in TRIP-aided multiphase steel was analyzed. The analysis was performed using a computational model that takes the ductile fracture during tensile deformation into account. The TRIP and MIMT phenomena were calculated using the concept of variant selection, which is based on the Kurdjumov–Sachs (K–S) orientation relationship. To consider the localization of the plastic flow in the deforming material, the increase in void nucleation due to the martensitic transformation and the void growth based on the yield criterion for porous material were studied. The feasibility of the extra advanced high-strength sheet steel (X-AHSS) was assessed by analyzing the results obtained using various initial volume fractions and various stabilities of the retained austenite in the TRIP-aided multiphase steel. Subsequently, the optimum volume fraction and stability of the retained austenite in the TRIP-aided multiphase steel could be determined.  相似文献   
103.
Quenching and tempering (Q&T) process is commonly applied in part making industries for improving mechanical properties of carbon low alloy steels. After Q&T, microstructure of the steel consists of temper martensite and carbide precipitations. In this work, material modeling for describing flow stress behavior of the SNCM439 alloy steel under different tempering conditions was introduced. Microstructure based models were developed on both macro- and micro-scale. The models were afterwards applied in FE simulations for predicting stress–strain responses of the tempered steels. For the macroscopic model, the Ludwik equation was used, in which precipitation strengthening depending on particle size was incorporated by the Ashby–Orowan relationship. For the microscopic model, representative volume elements (RVEs) were generated considering microstructure characteristics of the examined steels. Flow curves of the individual constituents were described based on dislocation theory and chemical compositions. The FE simulations of tensile tests and RVE simulations under uniaxial tension were performed using the introduced models. The influences of the carbide precipitations on mechanical behavior of the tempered steels were investigated. The resulted effective stress–strain curves were determined and compared with the experimental ones. Both macroscopic and microscopic approaches accurately predicted mechanical properties and strain hardening behaviors of the tempered steels.  相似文献   
104.
An experimental investigation is performed on the quasi-static and cyclic behavior of metal impregnated composites such as Cu–C/C and Si–C/C with a slot together with C/C for comparison. They are expected to be applied to an aircraft brake system. Composites tested are based on a preformed yarn method and their fatigue strength and related characteristics are obtained. Damage mechanisms are discussed and it is concluded that effects of microscopic debonding are quite important to the fatigue response of the present specimen and that the debonding makes the failure mode shift from crack propagation in static loading to bearing in cyclic loading.  相似文献   
105.
The effect of residual stresses on the reverse bending fatigue strength of steel sheets with punched holes was studied for steels with tensile strength grades of 540 MPa and 780 MPa. Tensile and compressive residual stresses were induced around the punched holes. Heat treatment of the specimens with punched holes at 873 K for 1 h decreased the residual stresses around the holes and improved the fatigue strength of the sheets. This result means that the tensile residual stresses induced in the sidewalls of the holes and near the hole edges by punching reduced fatigue strength. The effect of the residual stresses on the fatigue limits of the edges was estimated by the modified Goodman relation using the residual stresses after cyclic loading and the ultimate tensile strength at the fatigue crack initiation sites.  相似文献   
106.
For improved core performance via edge plasma-wall boundary control, solid and liquid lithium has been used as a plasma-facing material in a number of confinement experiments over the past several decades. Unfortunately, it is unavoidable that lithium is saturated in the surface region with implanted hydrogenic species as well as oxygen-containing impurities. For steady state operation, a flowing liquid lithium divertor with forced convection would probably be required. In the present work, the effects of liquid stirring to simulate forced convection have been investigated on the behavior of hydrogen and helium recycling from molten lithium at temperatures up to ∼350 °C. Data indicate that liquid stirring reactivates hydrogen pumping via surface de-saturation and/or uncovering impurity films, but can also induce helium release via surface temperature change.  相似文献   
107.
Metallurgical and Materials Transactions A - The shear deformation texture of bcc metals is characterized by the Goss orientation, or {110}〈001〉, which is a highly useful orientation...  相似文献   
108.
《Acta Materialia》2003,51(13):3795-3805
Experiments and analyses have been carried out to reach a better understanding of the mechanism of Goss texture formation during the secondary recrystallisation of silicon steel processed by the single cold reduction route. A new experimental approach demonstrated the effect of misorientation on the growth rates of secondary grains and it is shown that these rates are controlled by the proportion of matrix grains having Σ9 CSL relationships to growing secondary grains. It is considered that the Σ9 boundaries have lower energy than general grain boundaries and so are less strongly inhibited by Zener drag. The relative infrequency of Σ9 boundaries around the periphery of secondary grains is seen as evidence for their sacrificial behaviour. Other experiments involving growth of randomly oriented nuclei provide independent support for the important role of Σ9 boundaries during secondary recrystallisation in this steel.  相似文献   
109.
Residual stresses, bending moments, and warpage of film insert molded (FIM) parts were investigated by experimental and numerical analyses. Thermally induced residual stresses in FIM parts were predicted by numerical simulations with both commercial and house codes. Bending moments and warpage of FIM tensile specimens were calculated numerically and compared with experimental results. Thermally induced residual stresses were predicted by utilizing a one‐dimensional thermoelastic model where constant material properties are assumed. The residual stress distribution depended remarkably on the Biot number and the heat was removed rapidly through the surface resulting in high residual stresses. Asymmetric residual stresses generated by nonuniform cooling of the part provoked nonuniform shrinkage and warpage of the molded tensile specimen. It was found that the numerically calculated bending moment is in good agreement with the experimental results. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号