首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   195篇
  免费   24篇
  国内免费   1篇
电工技术   1篇
综合类   1篇
化学工业   57篇
金属工艺   42篇
机械仪表   6篇
建筑科学   1篇
矿业工程   2篇
能源动力   5篇
水利工程   2篇
无线电   17篇
一般工业技术   56篇
冶金工业   13篇
原子能技术   7篇
自动化技术   10篇
  2023年   9篇
  2022年   16篇
  2021年   6篇
  2020年   8篇
  2019年   3篇
  2018年   11篇
  2017年   12篇
  2016年   11篇
  2015年   8篇
  2014年   15篇
  2013年   14篇
  2012年   19篇
  2011年   8篇
  2010年   18篇
  2009年   9篇
  2008年   7篇
  2007年   4篇
  2006年   4篇
  2005年   1篇
  2004年   4篇
  2003年   4篇
  2002年   1篇
  2001年   5篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1987年   3篇
  1986年   1篇
  1984年   3篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有220条查询结果,搜索用时 15 毫秒
141.
142.
Water splitting is regarded as an effective way to produce hydrogen energy to solve the energy crisis all over the world. However, the electrocatalysts suffer from expensive prices, high voltage, and sluggish kinetics. The heterojunction is composed of two semiconductors and can accelerate electron transfer by relying on interface engineering. Herein, we first prepare NiS2@V2O5/VS2 ternary heterojunction electrocatalyst, showing the low OER overpotential of 333 mV and HER overpotential of 216 mV at 10 mA cm?2, as well as good stability. Meanwhile, the NiS2@V2O5/VS2 heterojunction is assembled to the two-electrode system for overall water splitting, exhibiting a very low voltage value of 1.49 V, which is much superior to that of the benchmark RuO2//Pt/C system. The energy band calculation reveals the mechanism that the NiS2 and VS2 lower the Fermi level of V2O5, thus promoting the electrons transfer in the electrocatalytic reactions. Our work opens up a novel route for heterojunction application in the electrocatalytic field.  相似文献   
143.
Facing the energy crisis in the whole world, it is important to decompose water to obtain high-clean hydrogen energy. However, water splitting by electrocatalysis is suffering from high voltage and poor stability. Herein, we synthesize Co3V2O8 coral reef-like nanoparticles in a facile way, showing a low oxygen evolution reaction (OER) overpotential of 318 mV coupled with good stability, which is superior to commercial RuO2. Besides, the Co3V2O8 shows fast kinetics for hydrogen evolution reaction (HER) and small impedance. Furthermore, the Co3V2O8 nanoparticles are assembled in symmetric two-electrode system, which has a very low overall water splitting voltage of 1.50 V at 10 mA cm?2, this value surpasses the benchmark RuO2//Pt/C assembling and most of the other oxometalate-based electrocatalysts. This work provides a novel and facile way of preparing oxometalates nanomaterial electrocatalyst for hydrogen energy.  相似文献   
144.
Graphene-based materials, primarily graphene oxide (GO), have shown excellent separation and purification characteristics. Precise molecular sieving is potentially possible using graphene oxide-based membranes, if the porosity can be matched with the kinetic diameters of the gas molecules, which is possible via the tuning of graphene oxide interlayer spacing to take advantage of gas species interactions with graphene oxide channels. Here, highly effective separation of gases from their mixtures by using uniquely tailored porosity in mildly reduced graphene oxide (rGO) based membranes is reported. The gas permeation experiments, adsorption measurement, and density functional theory calculations show that this membrane preparation method allows tuning the selectivity for targeted molecules via the intercalation of specific transition metal ions. In particular, rGO membranes intercalated with Fe ions that offer ordered porosity, show excellent reproducible N2/CO2 selectivity of ≈97 at 110 mbar, which is an unprecedented value for graphene-based membranes. By exploring the impact of Fe intercalated rGO membranes, it is revealed that the increasing transmembrane pressure leads to a transition of N2 diffusion mode from Maxwell–Stefan type to Knudsen type. This study will lead to new avenues for the applications of graphene for efficiently separating CO2 from N2 and other gases.  相似文献   
145.
Virgin injection‐molded tensile specimens without any inserted film and four kinds of film insert molded (FIM) tensile specimens were prepared. They were annealed at 80°C to investigate the effect of residual stresses and thermal shrinkage of the inserted film on thermal deformation of tensile specimens. The FIM specimens with the unannealed film were bent after ejection in such a way that the film side was protruded and the warpage was reversed gradually during annealing and the film side was intruded. Warpage of the FIM specimen with the film annealed at 80°C for 20 days was not reversed during annealing. Processing of the FIM specimens have been modeled numerically to predict thermoviscoelastic deformation of the part and to understand the warpage reversal phenomenon (WRP). Nonisothermal three‐dimensional flow analysis was carried out for filling, packing, and cooling stages. The flow analysis results were transported to a finite element stress analysis program for prediction of deformation of the FIM part. The WRP was caused by the combined effect of thermal shrinkage of the inserted film and relaxation of residual stresses in the FIM specimen during annealing. It is expected that this study will contribute towards the improvement of the FIM product quality and prevention of large viscoelastic deformation of the molded part. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   
146.
Nanoimprint lithography is in the spotlight of the nano technology field for its ability to produce large area patterning [1], [2], [4]. This kind of lithography is also able to fabricate three-dimensional functional structures all at once. In order to fabricate three-dimensional structures for an entire wafer, simple fabrication of three-dimensional large area stamp that combines micro- and nano-scale patterns is required. This paper proposes, the fabrication process of three-dimensional large area stamp that incorporates both micro- and nano-scale pattern. The three-dimensional stamp, which accounts for areas that range from 70nm to 3um, is fabricated on a Si substrate using nanoimprint lithography and optical lithography.  相似文献   
147.
The exact role of Cu in the electrical properties of amorphous oxide semiconductors (AOSs) has been unclear, even though Cu has been the key element for the p‐type characteristics of crystalline oxide semiconductors. Here, the dynamic changes, determined by diffusion kinetics, in the effect of Cu on the electrical properties of amorphous In? Ga? Zn? O (a‐IGZO) are revealed. In the early stage of annealing, Cu dominantly diffuses into a‐IGZO through the free volume and acts as a mobile electron donor, which generates a resistive switching (RS) behavior related to the conductive filaments (CFs). With further annealing, substitutional Cu becomes predominant via In sites. After annealing, supersaturated Cu forms nonuniform, crystalline Cu? In? O clusters in a‐IGZO, which decrease the electrical conductivity of a‐IGZO and deteriorate the CF‐based RS performance. The findings reveal Cu diffusion mechanisms and the role of Cu in the electrical properties of AOSs dependent on the structural location and provide guidelines for modulating the RS characteristics of AOSs through Cu diffusion control.  相似文献   
148.
The effect of laser assisted local heating on the mechanical properties of a hot stamping steel tube was in-vestigated.A heated region with a spiral shape was generated on the surface of the tube by combining the linear movement of the laser and the rotation of the tube.The results of axial crush tests show that the laser assisted local heating can be effectively used to modify the mechanical performance of the tube.A microstructural analysis confirms that the laser locally induces a martensitic phase transformation in the heated region and results in inhomogeneous microstructures along the length of the tube.  相似文献   
149.
The ballistic impact behavior of hybrid composite laminates synthesized for armor protection was investigated. The hybrid materials, which consist of layers of aluminum 5086-H32 alloy, Kevlar® 49 fibers impregnated with shear thickening fluid (STF) and epoxy resin were produced in different configurations using hand lay-up technique. The hybrid materials were impacted by projectiles (ammunitions of 150 g power-point) fired from a rifle Remington 7600 caliber 270 Winchester to strike the target at an average impact velocity and impact energy of 871 m/s and 3687 J, respectively. The roles of the various components of the hybrid materials in resisting projectile penetration were evaluated in order to determine their effects on the overall ballistic performance of the hybrid laminates. The effects of hybrid material configuration on energy dissipation during ballistic impacts were investigated in order to determine a configuration with high performance for application as protective armor. The energy dissipation capability of the hybrid composite targets was compared with the initial impact energy of low caliber weapons (according to NATO standards) in order to determinate the protection level achieved by the developed hybrid laminates. Deformation analysis and penetration behavior of the targets were studied in different stages; the initial (on target front faces), intermediate (cross-section), and final stages (target rear layers). The influence of target thickness on the ballistic impact response of the laminates were analyzed. Differences in ballistic behavior were observed for samples containing Kevlar® impregnated with STF and those containing no STF. Finally, mechanisms of failure were investigated using scanning electron microscopic examination of the perforations.  相似文献   
150.
The impact of component orientation and selective carburising is examined on the distortion during quenching of post-forming heat-treated (PFHT) channels using three different strength martensitic steel grades. The results show that the minimal, though unpredictable distortion that occurred during quenching of uncarburised channels was confined to either an opening or closing of the channel wall angle. It is also shown that selective carburising on a given surface of the channel will cause a significant change in the shape of the channel during quenching, which is related to the depth of carburising.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号