首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4425篇
  免费   199篇
  国内免费   139篇
电工技术   26篇
综合类   153篇
化学工业   769篇
金属工艺   165篇
机械仪表   61篇
建筑科学   465篇
矿业工程   314篇
能源动力   551篇
轻工业   78篇
水利工程   221篇
石油天然气   264篇
武器工业   2篇
无线电   149篇
一般工业技术   555篇
冶金工业   180篇
原子能技术   37篇
自动化技术   773篇
  2024年   3篇
  2023年   214篇
  2022年   154篇
  2021年   163篇
  2020年   237篇
  2019年   264篇
  2018年   92篇
  2017年   188篇
  2016年   246篇
  2015年   232篇
  2014年   263篇
  2013年   311篇
  2012年   180篇
  2011年   177篇
  2010年   193篇
  2009年   173篇
  2008年   63篇
  2007年   138篇
  2006年   169篇
  2005年   102篇
  2004年   75篇
  2003年   89篇
  2002年   109篇
  2001年   118篇
  2000年   69篇
  1999年   102篇
  1998年   46篇
  1997年   25篇
  1996年   43篇
  1995年   48篇
  1994年   39篇
  1993年   23篇
  1992年   21篇
  1991年   34篇
  1990年   31篇
  1989年   20篇
  1988年   48篇
  1987年   138篇
  1986年   101篇
  1985年   15篇
  1980年   1篇
  1979年   5篇
  1975年   1篇
排序方式: 共有4763条查询结果,搜索用时 46 毫秒
101.
We report a new mechanism of hydrophobic ripening for the formation of carbonaceous spheres by the dehydration of saccharides in a hydrothermal aqueous environment using fructose as a model precursor material. We investigated the formation of carbonaceous spheres from fructose in aqueous solutions under hydrothermal conditions. The spheres were found to contain 65.7 wt.% C, 4.3 wt.% H and 30.0 wt.% O, implying incomplete dehydration of the fructose. The spheres, typically ranging between 400 nm and 10 μm in diameter, are found to be constructed entirely of primary particles of ~5 nm. The chemical structure of the carbonaceous spheres and the chemical compositions of residual solutions were analysed using solid state and solution 13C nuclear magnetic resonance and Fourier transform infrared spectroscopy. Based on these results, a four-step mechanism for the formation and growth of carbonaceous spheres has been proposed.  相似文献   
102.
Radiation induced dissolution of uranium dioxide (UO2) nuclear fuel and the consequent release of radionuclides to intruding groundwater are key-processes in the safety analysis of future deep geological repositories for spent nuclear fuel. For several decades, these processes have been studied experimentally using both spent fuel and various types of simulated spent fuels. The latter have been employed since it is difficult to draw mechanistic conclusions from real spent nuclear fuel experiments. Several predictive modelling approaches have been developed over the last two decades. These models are largely based on experimental observations. In this work we have performed a critical review of the modelling approaches developed based on the large body of chemical and electrochemical experimental data. The main conclusions are: (1) the use of measured interfacial rate constants give results in generally good agreement with experimental results compared to simulations where homogeneous rate constants are used; (2) the use of spatial dose rate distributions is particularly important when simulating the behaviour over short time periods; and (3) the steady-state approach (the rate of oxidant consumption is equal to the rate of oxidant production) provides a simple but fairly accurate alternative, but errors in the reaction mechanism and in the kinetic parameters used may not be revealed by simple benchmarking. It is essential to use experimentally determined rate constants and verified reaction mechanisms, irrespective of whether the approach is chemical or electrochemical.  相似文献   
103.
The YAG:Pr transparent ceramic was fabricated using a conventional solid-state reactive method to explore its possible application in optical thermometry. Photoluminescence and temperature-dependent luminescence were elaborately investigated under 452 nm excitation. The ceramic showed two intrinsic emission bands at 488 and 594 nm, which were attributed to characteristic Pr3+: 3P0 → 3H4 and 3P1 → 3H6 transitions, respectively. Down-conversion emissions from the two thermally coupled excited states of Pr3+ were recorded in the temperature range of 293–593 K. The Boltzmann distribution theory was adopted to interpret the temperature-dependent luminescence of Pr3+. The temperature sensitivity exhibited an increasing trend with the increase of temperature, typically, 0.0025 K−1 at 593 K. The results indicated that the present ceramic was a promising candidate for optical temperature sensor.  相似文献   
104.
It is clear that the density and porosity of biochar will impact its mobility in the environment, its interaction with the soil hydrologic cycle, and its suitability as an ecological niche for soil microorganisms. However, the wide range of biochar pore sizes complicates biochar porosity characterization, making it challenging to find methods appropriate to connect the fundamental physical properties of density and porosity to environmental outcomes. Here, we report the use of two fast, simple density measurement techniques to characterize biochar density and porosity. We measured biochar skeletal density by helium pycnometry and envelope density by displacement of a dry granular suspension. We found that biochar skeletal density ranged from 1.34 g cm−3 to 1.96 g cm−3, and increased with pyrolysis temperature. Biochar envelope density ranged from 0.25 g cm−3 to 0.60 g cm−3, and was higher for wood biochars than grass biochars—a difference we attribute to plant cell structures preserved during pyrolysis. We compared the pore volumes measured by pycnometry with those measured by nitrogen gas sorption and mercury porosimetry. We show that biochar pore volumes measured by pycnometry are comparable to the values obtained by mercury porosimetry, the current benchmark method. We also show that the majority of biochar pore volume is in macropores, and thus, is not measured by gas sorption analysis. These fast, simple techniques can now be used to study the relationship between biochar's physical properties and its environmental behaviors.  相似文献   
105.
Positively charged nitrogen functional groups were introduced onto the surface of granular activated carbon (GAC), and these increased perchlorate anion removal from drinking water sources. Nitrogen functionalization involved three treatment steps: (1) introducing oxygen groups onto the GAC, (2) incorporating nitrogen groups by thermal treatment in ammonia flow to replace O with N, and (3) quaternerizing pyridine-like groups to create positively charged pyridinium-like groups. Functionalized bituminous GAC provided 6 times more perchlorate removal than its predecessor, pristine bituminous GAC. The conversion of pyridine-like groups (after step 2) to pyridinium-like groups by quaternization (step 3) was confirmed by analysis of the XPS N 1s signals and surface charge analysis. Redox peaks, observed during cyclic voltammetry analysis of the functionalized GAC, evidenced that these nitrogen functional groups were electrochemically active, so that they sorbed perchlorate when they were oxidized, and then desorbed perchlorate when reduced. Moreover, after sorbing perchlorate onto pyridinium-GAC in RSSCTs, the GAC media could be regenerated by electrochemical reduction, and its capacity for perchlorate adsorption was mostly restored. This tailored functionality and redox regeneration of a relatively inexpensive media such as activated carbon could offer novel opportunity to the adsorption industry.  相似文献   
106.
《Ceramics International》2016,42(3):4185-4193
Single crystal of new cadmium and neodymium molybdate solid solution (Cd0.958Nd0.0280.014MoO4, where □ denotes cationic vacancies) has been successfully grown by the Czochralski method. The X-ray diffraction analysis confirmed that this solid solution crystallizes in the scheelite type structure, the Nd3+ ions do not show long-range order and they are randomly distributed in the unit cell, substituting the Cd2+ ions. As a consequence, the unexpected properties of CdMoO4:Nd3+ are observed such as the energy gap (~1.77 eV) twice smaller than that of the matrix CdMoO4, a paramagnetic state with the short-range ferromagnetic interactions, behavior related to the electrical conductor with pn transition along the 〈100〉 axis, the semiconducting behavior with np transition along the 〈001〉 axis and the diode-like behavior found to be of Schottky- or Maxwell-Wagner type. Therefore, we predict great potential of this single crystal for technical applications in electronic devices.  相似文献   
107.
Distributed Brillouin sensing systems (DBSs) have growing applications in engineering and are attracting attention in the field of underground structures, including mining. The capability for continuous measurements of strain over large distances makes DBSs a promising monitoring approach for understanding deformation field evolution within a rock mass, particularly when the sensor is installed away from excavation damaged zone (EDZ). A purpose-built fiber optic sensing cable, a vital component of DBSs, was assessed in laboratory conditions.A test program was performed to observe DBSs response to various perturbations including strain and joint movements, including opening and shearing of joints. These tests included assessment of the strain-free cable response and the application of extensional and lateral displacement to various sensing cable lengths (strained lengths), from 1 m down to 1 cm. Furthermore, tests were done to evaluate the time-dependent behavior of the cable and to observe the effect of strain transfer using a soft host material (e.g. a soft grout) under lateral displacement.The noise level of the DBSs range was ±77 με, determined through repeated measurements on an unstrained cable. Stretching test results showed a clear linear correlation between applied strain and Brillouin frequency shift change for all strained lengths above half the spatial resolution of the DBSs. However, for strained lengths shorter than half the spatial resolution, no strain response was measurable and this is due to the applied internal signal processing of the DBSs to detect peak Brillouin gain spectrum and noise level. The stability with time of the measurements was excellent for test periods up to 15 h.Lateral displacement test results showed a less consistent response compared to tension tests for a given applied displacement. Although the Brillouin frequency shift change is correlated linearly with the applied displacement in tension, it shows a parabolic variation with lateral displacement. Moreover, the registered frequency response (correlated with strain) of the system decreased significantly when the sensing cable was embedded in a sand-filled tube compared with direct cable displacement.  相似文献   
108.
Tunnel construction planning requires careful consideration of the spoil management part, as this involves environmental, economic and legal requirements. In this paper a methodological approach that considers the interaction between technical and geological factors in determining the features of the resulting muck is proposed. This gives indications about the required treatments as well as laboratory and field characterisation tests to be performed to assess muck recovery alternatives. While this reuse is an opportunity for excavations in good quality homogeneous grounds (e.g. granitic mass), it is critical for complex formation. This approach has been validated, at present, for three different geo-materials resulting from a tunnel excavation carried out with a large diameter Earth Pressure Balance Shield (EPB) through a complex geological succession. Physical parameters and technological features of the three materials have been assessed, according to their valorisation potential, for defining re-utilisation patterns. The methodology proved to be effective and the laboratory tests carried out on the three materials allowed the suitability and treatment effectiveness for each muck recovery strategy to be defined.  相似文献   
109.
Climate change is now increasingly evident on the Qinghai–Tibet Plateau and has a strong impact on both the abiotic and biotic components of ecosystems, particularly on permafrost, active layer thickness, vegetation, and soil properties. Permafrost ecosystems are recognized to be sensitive to the influences of the changing climate, which may disturb the permafrost soil carbon (C) pool and lead to huge C emissions. To facilitate the assessment of warming effects on the temperature and moisture patterns in the shallow soil of the active layer of the wet meadows on the Qinghai–Tibet Plateau, near-surface air temperature was passively increased by using open-top chambers (OTCs) with two different temperature increments. Soil temperature and moisture were continuously monitored at depths of 5, 20, and 40 cm at hourly intervals in a wet meadow in the Beiluhe region on the Qinghai–Tibet Plateau from October 1, 2007 to June 24, 2009. When near-surface air temperature increased by 5.29 °C and 1.84 °C in the OTC2 and OTC1 plots, respectively, relative to the control plots, soil temperatures at depths of 5, 20, and 40 cm were seen to increase by 3.84°C, 2.23°C, and 1.42 °C, respectively, in the OTC2 plots and by 0.94°C, 0.27°C, and 0.25 °C, respectively, in the OTC1 plots. Soil moisture content at depths of 5, 20, and 40 cm declined by 8.04%, 1.79%, and 1.52%, respectively, in the OTC2 plots and by 5.33%, 0.69%, and 0.09%, respectively, in the OTC1 plots. Near-surface warming was found to extend the continuous thawing time of the shallow soil, delay the occurrence of the autumnal freezing process, and shorten the duration of continuous freezing. It was also seen to increase both the temperature of the shallow soil and the accumulated temperatures at different depths. Near-surface warming could be one of the main factors leading to the degradation of vegetation, thus threatening the stability of the soil C pool and the ecological safety of the Qinghai–Tibet Plateau.  相似文献   
110.
A reduced graphene oxide (rGO) supported chiral-modified Ni catalyst was synthesized, characterized and employed for asymmetric hydrogenation. The prepared hybrid catalyst could produce each enantiomer with d- or l-tartaric acid as chiral modifier and exhibited a high TOF (20160 h−1) and enantioselectivity (enantiomeric excess, 98.5%) for asymmetric hydrogenation of methyl acetoacetate. The high catalytic activity and enantioselectivity were mainly attributed to the unique properties of the support rGO, as it had a large specific surface area to sustain and stabilize Ni particles and its high charge carrier mobility could enable the readily transfer of electrons in the reaction process. Besides, the catalyst could also gain an enhanced reactant sorption with the support of rGO, thus achieved a greatly catalysis enhancement. The ferromagnetism of Ni made the catalyst easier for separation and reuse. The catalytic and recycling performance of the prepared chiral Ni catalyst demonstrated that rGO was indeed a promising support to improve activity, enantioselectivity and durability of catalysts, and the prepared catalysts were promising reusable heterogeneous catalysts for asymmetric hydrogenation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号