首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28107篇
  免费   1599篇
  国内免费   468篇
电工技术   261篇
综合类   1126篇
化学工业   7098篇
金属工艺   973篇
机械仪表   370篇
建筑科学   2727篇
矿业工程   1490篇
能源动力   4459篇
轻工业   1279篇
水利工程   739篇
石油天然气   340篇
武器工业   20篇
无线电   783篇
一般工业技术   4288篇
冶金工业   1225篇
原子能技术   231篇
自动化技术   2765篇
  2024年   66篇
  2023年   1132篇
  2022年   826篇
  2021年   968篇
  2020年   1598篇
  2019年   1495篇
  2018年   787篇
  2017年   1117篇
  2016年   1696篇
  2015年   1590篇
  2014年   2066篇
  2013年   1980篇
  2012年   1549篇
  2011年   1376篇
  2010年   1316篇
  2009年   1307篇
  2008年   487篇
  2007年   1243篇
  2006年   1192篇
  2005年   763篇
  2004年   391篇
  2003年   482篇
  2002年   592篇
  2001年   570篇
  2000年   303篇
  1999年   373篇
  1998年   215篇
  1997年   103篇
  1996年   224篇
  1995年   152篇
  1994年   122篇
  1993年   87篇
  1992年   89篇
  1991年   99篇
  1990年   103篇
  1989年   83篇
  1988年   217篇
  1987年   479篇
  1986年   440篇
  1985年   110篇
  1984年   73篇
  1983年   58篇
  1982年   52篇
  1981年   47篇
  1980年   33篇
  1979年   55篇
  1978年   31篇
  1977年   8篇
  1976年   19篇
  1951年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
The use of ozone to increase the cation exchange capacity (CEC) of two chars produced from pyrolysis of Douglas fir (Pseudotsuga menziessii) and a control bituminous coal activated carbon (AC) is reported. Chars were produced from the wood fraction of Douglas fir (DFWC) and the bark (DFBC) at 500 °C using an auger driven reactor with a nitrogen sweep gas under mild vacuum. Five ozone treatment times, ranging from 5 min to 60 min, were investigated. The initial properties of each char were found to differ significantly from the other samples in terms of surface area, proximate composition, and elemental composition. DFWC did not show significant mass loss or temperature variation during ozone treatment; however, after 1 h of oxidation both DFBC and AC samples resulted in 20% and 30% mass loss, respectively, and reactor temperatures in excess of 60 °C. Analysis of the pore size distribution of each treatment shows that ozone treatment did not significantly affect small micropores after 30 min of treatment for any material, but did reduce the apparent surface area of mesopores. Increases in carboxylic groups were identified with ozone treatment and found to correlate strongly with changes in measured CEC. The formation of lactone was found to correlate positively with reactor temperature during oxidation. These results indicate that the properties of chars, including surface area, pore structure, and chemical composition, as well as reactor conditions strongly affect the ozone oxidation of chars.  相似文献   
62.
This study is to evaluate the potential for development of a cellulosic ethanol facility in Vietnam. Rice straw is abundant in Vietnam and highly concentrated in the Mekong Delta, where about 26 Mt year−1 of rice straw has been yearly produced. To minimize the overall production cost (PC) of ethanol from rice straw, it is crucial to choose the optimal facility size. The delivered cost of rice straw varied from 20.5 to 65.4 $ dry t−1 depending on transportation distance. The Mekong Delta has much lower rice straw prices compared with other regions in Vietnam because of high density and quantity of rice straw supply. Thus, this region has been considered as the most suitable location for deploying ethanol production in Vietnam. The optimal plant size of ethanol production in the region was estimated up to 200 ML year−1. The improvement in solid concentration of material in the hydrothermal pre-treatment step and using residues for power generation could substantially reduce the PC in Vietnam, where energy costs account for the second largest contribution to the PC, following only enzyme costs. The potential for building larger ethanol plants with low rice straw costs can reduce ethanol production costs in Vietnam. The current estimated production cost for an optimal plant size of 200 ML year−1 was 1.19 $ L−1. For the future scenario, considering improvements in pre-treatment, enzyme hydrolysis steps, specific enzyme activity, and applying residues for energy generation, the ethanol production cost could reduce to 0.45 $ L−1 for a plant size of 200 ML year−1 in Vietnam. These data indicated that the cost-competitiveness of ethanol production could be realized in Vietnam with future improvements in production technologies.  相似文献   
63.
ObjectiveTraffic collisions yield a substantial rate of morbidity and injury among child-pedestrians. We explored the formation of an innovative hazard perception training intervention – Child-pedestrians Anticipate and Act Hazard Perception Training (CA2HPT). Training was based upon enhancing participants’ ability to anticipate potential hazards by exposing them to an array of traffic scenes viewed from different angles.MethodTwenty-four 7–9-year-olds have participated. Trainees underwent a 40-min intervention of observing typical residential traffic scenarios in a simulated dome projection environment while engaging in a hazard detection task. Trainees were encouraged to note differences between the scenarios presented to them from separate angles (a pedestrian's point-of-view and a higher perspective angle). Next, trainees and control group members were required to perform crossing decision tasks.ResultsTrainees were found to be more aware of potential hazards related to restricted field of view relative to control.ConclusionsChild pedestrians are responsive to training and actively detecting materialized hazards may enrich child-pedestrians’ ability to cross roads.  相似文献   
64.
Developing highly active, stable and sustainable electrocatalysts for overall water splitting is of great importance to generate renewable H2 for fuel cells. Herein, we report the synthesis of electrocatalytically active, nickel foam-supported, spherical core-shell Fe-poly(tetraphenylporphyrin)/Ni-poly(tetraphenylporphyrin) microparticles (FeTPP@NiTPP/NF). We also show that FeTPP@NiTPP/NF exhibits efficient bifunctional electrocatalytic properties toward both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER). Electrochemical tests in KOH solution (1 M) reveal that FeTPP@NiTPP/NF electrocatalyzes the OER with 100 mA cm−2 at an overpotential of 302 mV and the HER with 10 mA cm−2 at an overpotential of 170 mV. Notably also, its catalytic performance for OER is better than that of RuO2, the benchmark OER catalyst. Although its catalytic activity for HER is slightly lower than that of Pt/C (the benchmark HER electrocatalyst), it shows greater stability than the latter during the reaction. The material also exhibits electrocatalytic activity for overall water splitting reaction at a current density of 10 mA cm−2 with a cell voltage of 1.58 V, along with a good recovery property. Additionally, the work demonstrates a new synthetic strategy to an efficient, noble metal-free-coordinated covalent organic framework (COF)-based, bifunctional electrocatalyst for water splitting.  相似文献   
65.
Due to the systematic increase in the production of nanomaterials (NMs) and their applications in many areas of life, issues associated with their toxicity are inevitable. In particular, the performance of heterogeneous NMs, such as nanocomposites (NCs), is unpredictable as they may inherit the properties of their individual components. Therefore, the purpose of this work was to assess the biological activity of newly synthesized Cu/TiO2-NC and the parent nanoparticle substrates Cu-NPs and TiO2-NPs on the bacterial viability, antioxidant potential and fatty acid composition of the reference Escherichia coli and Bacillus subtilis strains. Based on the toxicological parameters, it was found that B. subtilis was more sensitive to NMs than E. coli. Furthermore, Cu/TiO2-NC and Cu-NPs had an opposite effect on both strains, while TiO2-NPs had a comparable mode of action. Simultaneously, the tested strains exhibited varied responses of the antioxidant enzymes after exposure to the NMs, with Cu-NPs having the strongest impact on their activity. The most considerable alternations in the fatty acid profiles were found after the bacteria were exposed to Cu/TiO2-NC and Cu-NPs. Microscopic images indicated distinct interactions of the NMs with the bacterial outer layers, especially in regard to B. subtilis. Cu/TiO2-NC generally proved to have less distinctive antimicrobial properties on B. subtilis than E. coli compared to its parent components. Presumably, the biocidal effects of the tested NMs can be attributed to the induction of oxidative stress, the release of metal ions and specific electrochemical interactions with the bacterial cells.  相似文献   
66.
Water Resources Management - Overexploitation of groundwater in the Malayer Plain has resulted in a continuous decline of groundwater levels over recent years with associated risks to water...  相似文献   
67.
Opening catalytically active sites in metal organic frameworks is an issue of fundamental importance for the development of effective and efficient catalysts. In this work, we first reported two metal metalloporphyrin–organic frameworks (MMPFs) with unoccupied pyridine groups as base catalysts. The reaction of Mn(II) and Co(II) with 5,10,15,20-tetrapyridylporphyrin produces two different metal metalloporphyrin–organic frameworks, {[(MnTPyP)]·H2O}n (MMPF-Mn) and [(CoTPyP)]n (MMPF-Co) (TPyP = 5,10,15,20-tetrapyridylporphyrin) under hydrothermal conditions. These two MMPFs have been fully characterized by single-crystal X-ray diffraction, powder XRD, elemental analysis and thermogravimetry (TG). MMPF-Mn displays a 3D network with a nbo topology, large and open hexagonal channels, MMPF-Co reveals a 1D single zigzag chain architecture. Interestingly, both MMPFs have a high thermal stability and opening basic pyridine group, which have been tested for the base catalyzed Knoevenagel condensation reaction. The catalytic study has demonstrated that MMPF-Mn catalysts having exposed pyridine group within 1D channel displayed an excellent performance for Knoevenagel condensation reaction. When MMPF-Mn was recycled four times, its catalytic activity remained with an inconspicuous decrease. We attribute MMPF-Mn showing a better performance than MMPF-Co to its active sites being aligned in extra-large cavity with an interior diameter of 20 Å.  相似文献   
68.
The objective of this work was to comparatively evaluate the production of biohydrogen (bio-H2) from tequila vinasses at optimized mesophilic and thermophilic conditions and to elucidate the main metabolic routes involved. Optimal temperatures of 35 °C and 55 °C, and pH of 5.5 maximized the bio-H2 production rates, 25.5 ± 0.01 NmL h−1 and 169.9 ± 8.9 NmL h−1 in the mesophilic and thermophilic regimens, respectively. During the operation of anaerobic sequencing batch reactors, the thermophilic process allowed a volumetric bio-H2 production rate of 519 ± 13 NmL-H2 L−1 d−1 equivalent to 750 ± 19 NmL-H2 Lvinasse−1, while the mesophilic one 448 ± 23 NmL-H2 L−1 d−1 and 647 ± 33 NmL-H2 Lvinasse−1, respectively. Furthermore, the gas produced under thermophilic conditions showed high hydrogen content (86.5%). Finally, formate degradation and glucose fermentation to acetic and butyric acids were the main metabolic routes involved in bio-H2 production under thermophilic conditions, while at mesophilic conditions, the lactate and formate degradation pathways governed.  相似文献   
69.
The feasibility of microbial hydrogen consumption to mitigate the hydrogen embrittlement (HE) under different cathodic potentials was evaluated using the Devanathan-Stachurski electrochemical test and the hydrogen permeation efficiency η. The hydrogen permeation efficiency η in the presence of strain GA-1 was lower than that in sterile medium. The cathodic potential inhibited the adherence of strain GA-1 to AISI 4135 steel surface, thereby reducing the hydrogen consumption of strain GA-1. The adherent GA-1 cells were capable of consuming ‘cathodic hydrogen’ and reducing the proportions of absorbed hydrogen, indicating that it is theoretically possible to control HE by hydrogen-consuming microbes.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号