首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   474篇
  免费   9篇
  国内免费   2篇
电工技术   5篇
综合类   2篇
化学工业   149篇
金属工艺   9篇
机械仪表   9篇
建筑科学   20篇
矿业工程   6篇
能源动力   74篇
轻工业   42篇
水利工程   6篇
石油天然气   13篇
无线电   38篇
一般工业技术   49篇
冶金工业   3篇
原子能技术   3篇
自动化技术   57篇
  2023年   5篇
  2022年   13篇
  2021年   36篇
  2020年   30篇
  2019年   32篇
  2018年   35篇
  2017年   45篇
  2016年   27篇
  2015年   19篇
  2014年   34篇
  2013年   41篇
  2012年   23篇
  2011年   17篇
  2010年   22篇
  2009年   8篇
  2008年   8篇
  2007年   12篇
  2006年   5篇
  2005年   4篇
  2004年   8篇
  2003年   14篇
  2002年   7篇
  2001年   9篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1992年   2篇
  1991年   2篇
  1990年   4篇
  1989年   1篇
  1988年   1篇
  1987年   5篇
  1986年   4篇
排序方式: 共有485条查询结果,搜索用时 312 毫秒
461.
Plastics Additives & Compounding has collaborated with the online expert solutions provider SpecialChem - specialchem.com - to bring you a question and answer troubleshooting forum to help solve technical problems arising from the use of plastics additives.  相似文献   
462.
The thermophysical properties like thermal conductivity and viscosity of Al2O3 nanofluid is determined through experiments at different volume concentrations and temperatures and validated. Convective heat transfer coefficient and friction factor data at various volume concentrations for flow in a plain tube and with twisted tape insert is determined experimentally for Al2O3 nanofluid. Experiments are conducted in the Reynolds number range of 10,000–22,000 with tapes of different twist ratios in the range of 0 < H/D < 83. The heat transfer coefficient and friction factor of 0.5% volume concentration of Al2O3 nanofluid with twist ratio of five is 33.51% and 1.096 times respectively higher compared to flow of water in a tube. A generalized regression equation is developed for the estimation of Nusselt number and friction factor valid for both water and nanofluid in plain tube and with inserts under turbulent flow conditions.  相似文献   
463.
Establishing non-precious metals with high efficiency for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) electrocatalysis are extremely essential for renewable energy technologies. Herein, we achieve the synthesis of metal-organic framework precursor of Cu[Fe(CN)6]·XH2O cube at room temperature, which further derived ferric oxide@cupric oxide alloy ball. On this foundation, we creatively synthesized ferric oxide@cupric oxide alloy ball on nitrogen-doped graphene (NG@Fe2O3/CuO alloy ball), where Fe2O3/CuO alloy ball is evenly anchored on nitrogen-doped graphene. It is worth noting that nitrogen doping, reduction of graphene oxide and conversion of Cu[Fe(CN)6]·XH2O cube precursor into Fe2O3/CuO alloy ball can be simultaneously realized by facile one-step calcination. Moreover, synergistic effect between the nitrogen-doped graphene and Fe2O3/CuO alloy ball can enhance the overall electrocatalytic performance of the catalyst by playing specific roles. The outstanding catalytic activity, long-term durability and stability make NG@Fe2O3/CuO alloy ball to become a promising non-precious electrocatalyst for electrochemical water oxidation.  相似文献   
464.
This paper addresses practical sizing optimization of deployable and scissor-like structures from a new point of view. These structures have been recently highly regarded for beauty, lightweight, determine behavior, proper performance against lateral loads and the ability of been compactly packaged. At this time, there is a few studies done considering practical optimization of these structures. Loading considered here includes wind and gravity loads. In foldable scissor-like structures, connections have a complex behavior. For this reason, in this study, the authors used the ABAQUS commercial package as an analyzer in the optimization procedure. This made the obtained optimal solutions highly reliable from the point of view of applicability and construction requirements. Also, to do optimization task, a fast genetic algorithm method, which has been recently introduced by authors, was utilized. Optimization results show that despite less weight for aluminum models than steel models, aluminum deployable structures are not affordable because they need more material than steel structures and cause more environmental damage.  相似文献   
465.
This paper proposes a sensitivity-based border-search and jump reduction method for optimum design of spatial trusses. It is considered as a two-phase optimization approach, where at the first phase, the first local optimum is found by few analyses, after the whole searching space is limited employing an efficient random strategy, and the second phase involves finding a sequence of local optimum points using the variables sensitivity with respect to corresponding values of constraints violation. To reach the global solution at phase two, a sequence of two sensitivity-based operators of border-search operator and jump operator are introduced until convergence is occurred. Sensitivity analysis is performed using numerical finite difference method. To do structural analysis, a link between open source software of OpenSees and MATLAB was developed. Spatial truss problems were attempted for optimization in order to show the fastness and efficiency of proposed technique. Results were compared with those reported in the literature. It shows that the proposed method is competitive with the other optimization methods with a significant reduction in number of analyses carried.  相似文献   
466.
Increasing the bending and shear capacities of reinforced concrete members is an interesting issue in structural engineering. In recent years, many studies have been carried out to improve capacities of reinforced concrete members such as using post and pre-tensioning, Fiber Reinforced Polymer and other techniques. This paper proposes a novel and significant technique to increase the flexural capacity of simply supported reinforced concrete beams. The proposed method uses a new reinforcement bar system having bent-up bars, covered with rubber tubes. This technique will avoid interaction of bent-up bars with concrete. They are located in the zone where compressive and tensile forces act against one another. The compressive force in the upper point of the bent-up bars is exerted to the end point of these bars located under neutral axis. Moreover, the tensile stress is decreased in reinforcements located under the neutral axis. This will cause the Reinforced Concrete (RC) beam to endure extra loading before reaching yield stress. These factors may well be considered as reasons to increase bending capacity in the new system. The laboratory work together with finite element method analysis were carried out in this investigation. Furthermore, bending capacity, ductility, strength, and cracking zone were assessed for the new proposed system and compared with the conventional model. Both the FEM simulation and the experimental test results revealed that the proposed system has significant impact in increasing the load bearing capacity and the stiffness of the RC beams. In the present study, an equation is formulated to calculate bending capacity of a new reinforcement bar system beam.  相似文献   
467.
The polymerization kinetics of methyl methacrylate with K2S2O8/L-serine redox system has been investigated volumetrically at 35±0.1°C under nitrogen atmosphere acidic aqueous medium in DMF/H2O mixture (50% v/v). The rates of polymerization were measured varying concentrations of the monomer, initiator, L-serine as well as temperature; and it was found to increase with increasing of both temperature and concentrations of monomer, initiator, and L-serine. The overall energy of activation (E a ) has been calculated to be 29.48 kJ/mol from the Arrhenius plot in temperature range 25–50°C. The molecular weight of the polymer was determined by gel permeation chromatography (GPC). Based on kinetic studies and depending on the results obtained, a suitable reaction mechanism has been suggested and the rates of polymerization found to obey the following equation: V p [methyl methacrylate]1.09[L-serine]1.03[K2S2O8]0.96.  相似文献   
468.
This work aims to study the combined free and forced convection of an Al2O3/water nanofluid flowing throughout an annulus. A set of three-dimensional elliptic governing equations were solved numerically using the finite volume technique. The effect of the volume fraction of the nanoparticles and the Richardson number on the thermal and hydrodynamic parameters was extensively investigated. The distribution of the axial velocity and temperature at different cross sections is shown. The axial variation of the frictional and heat transfer coefficients is presented. Results indicate that the Richardson number does not influence the frictional coefficient, while the heat transfer coefficient directly depends on the Ri number. The dimensional axial velocity continually increases with greater volume fraction of nanoparticles at the upper and lower sides of the annulus, while this behavior for dimensionless axial velocity is not continuous. The results indicate that any increase in the volume fraction results in secondary flow enhancement and, therefore, a delay in the occurrence of the maximum heat transfer coefficient.  相似文献   
469.
Sieve trays are widely used in fractionating devices like tray distillation towers existing in separation and purification industries. The weeping phenomenon that has a critical effect on the efficiency of tray towers was studied by a numerical model and some experiments. The experiments were carried out in a pilot scale column with the diameter of 1.22 m that includes two test trays and two chimney trays. Weeping rates and some hydraulic parameters were measured in sieve trays with the hole area of 7.04%. Furthermore, the total weeping rate and weeping rate in inlet and outlet halves of the test tray were determined. It was also used an Eulerian–Eulerian computational fluid dynamics (CFD) method for the present study. The model was able to predict the dry tray pressure drop, total pressure drop, clear liquid height, froth height, and weeping rate simultaneously. Furthermore, the obtained CFD results were in a good agreement with the experimental data in terms of pressure drop and the model properly predicted several hydraulic parameters like the liquid weeping behavior along the tray.  相似文献   
470.
In this paper, the effect of the inclination angle on the thermal performance of a two-phase closed thermosyphon with different filling ratios has been investigated experimentally under normal operating conditions. A series of experiments were carried out for inclination angle range of 5°–90° and filling ratios of 15%, 22%, and 30%. A copper thermosyphon with an outside diameter of 16 mm, an inside diameter of 14.5 mm, and a length of 1000 mm was employed. Distilled water was used as the working fluid. The results show that the two-phase closed thermosyphon has the highest thermal performance in the inclination angle range of 15°–60°. A good agreement was observed between the experimental results of this study and those available in the open literature. The interesting phenomenon of geyser boiling occurred in our experiments for filling ratios equal or greater than 30%. The geyser boiling puts no limitation on thermal performance of thermosyphon, but it should be avoided because it damages the condenser end cap due to the slug striking.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号