首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   934篇
  免费   93篇
  国内免费   23篇
电工技术   24篇
综合类   30篇
化学工业   94篇
金属工艺   189篇
机械仪表   274篇
建筑科学   4篇
矿业工程   3篇
能源动力   28篇
轻工业   3篇
武器工业   13篇
无线电   64篇
一般工业技术   131篇
冶金工业   16篇
原子能技术   1篇
自动化技术   176篇
  2023年   60篇
  2022年   45篇
  2021年   49篇
  2020年   66篇
  2019年   37篇
  2018年   43篇
  2017年   60篇
  2016年   74篇
  2015年   63篇
  2014年   76篇
  2013年   88篇
  2012年   95篇
  2011年   62篇
  2010年   30篇
  2009年   35篇
  2008年   12篇
  2007年   27篇
  2006年   37篇
  2005年   10篇
  2004年   6篇
  2003年   8篇
  2002年   8篇
  2001年   9篇
  2000年   5篇
  1999年   10篇
  1997年   1篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1989年   1篇
  1988年   4篇
  1987年   12篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1979年   3篇
排序方式: 共有1050条查询结果,搜索用时 12 毫秒
51.
应用CVD金刚石涂层工具研磨单晶蓝宝石   总被引:1,自引:0,他引:1  
通过热丝化学气相沉积(HFCVD)法制备了具有球状晶结构、棱锥形晶结构和棱柱形晶结构等3种不同表面特征的化学气相沉积(CVD)金刚石涂层工具,以提高其研磨效率。通过正交实验法研究了金刚石涂层晶粒形态、载荷、工作台转速、研磨时间等4个工艺参数对蓝宝石材料去除率和表面粗糙度的影响。结果表明:金刚石涂层的晶粒形态对材料去除率和表面粗糙度影响较大;球状晶结构金刚石涂层切向力较小,棱柱形晶结构金刚石涂层切向力较大;选择棱柱形晶CVD金刚石涂层工具研磨蓝宝石,在研磨加工参数为载荷0.15 MPa、转速100 r/min、研磨时间3 min时,其材料去除率为0.397μm/min,表面粗糙度为0.354μm。结果表明:提出的CVD金刚石涂层工具可用于进一步加工、研磨蓝宝石切片,去除其表面划痕,从而改善工件表面质量。  相似文献   
52.
目的以C/C复合材料为基体,设计ZrB_2-SiC功能梯度材料。方法利用Ansys软件对等离子喷涂ZrB_2-SiC功能梯度涂层在沉积过程中产生的残余应力进行数值模拟,分析成分分布指数p和梯度层厚度t对梯度涂层残余应力的影响;并通过基于悬臂梁理论的热应力解析,计算与基体接触的涂层在涂层与基体厚度比λ不同时的残余应力值。结果模拟分析结果表明,在涂层与基体的界面,梯度层的厚度对轴向压应力影响不大,径向压应力和切向应力均随厚度的增加而增大,在边缘区域应力集中较为严重,易产生层间破坏;纯ZrB_2层为表面层,其应力主要为径向压应力,且沿径向逐渐减小至0,到边缘处又突变为拉应力,并随p的增大而减小。对比解析法分析可得两者计算的与基体接触的涂层内部的残余应力随λ的增大都是逐渐降低的,这符合涂层内部的应力分布原理。根据优化设计,获得功能梯度材料在各梯度层厚度d为0.1~0.2 mm,成分梯度指数为4时的热应力变化缓和效果较好。结论基于悬臂梁理论的解析解可以很好地评估热应力,并验证了该模拟的正确性。  相似文献   
53.
The elastic prestressed ultrasonic peen forming (UPF) was adopted in order to solve problems of insufficient bending deformation and large spherical deformation of plate during free UPF. The theoretical analysis of prestressed UPF and the influence of elastic prebending moment on deformation were analyzed. Spherical deformation coefficient was defined to quantificationally describe the spherical deformation. Experiments were conducted to compare the differences between free UPF and prestressed UPF processes and the effects of processing parameters on bending curvature and spherical deformation coefficient were studied. The results show that peening trajectory in chordwise direction is beneficial to enlarging spanwise bending deformation and decreasing spherical deformation coefficient. Large prebending curvature is helpful to increase spanwise bending deformation and decrease chordwise deformation, thereby obviously decreasing spherical deformation coefficient. Large spanwise deformation can be obtained under large firing pin velocity, small plate thickness and small offset distance. Large firing pin velocity plays a positive role in decreasing spherical deformation, while plate thickness and offset distance have little effect on it. Above all, prebending curvature and peening trajectory are the most important factors during prestressed UPF process. This study provides guidance for parameters optimization of prestressed UPF for wing plate with large thickness.  相似文献   
54.
This study used a traditional solid-state reaction method to prepare a series of composite ceramics in the 0.7Mg4Nb2O9-(0.3-x)ZnAl2O4-xTiO2 ternary system. Crystalline phases and microstructure of Mg4Nb2O9-ZnAl2O4-TiO2 dielectric ceramic composites were investigated and correlated with the relevant dielectric properties. It was observed that the addition of Ti4+ substituted Nb5+ in the Mg4Nb2O9 structure, which promoted the decomposition of Mg4Nb2O9 to form the second phase, Mg5Nb4O15, during sintering. The synergistic effect of ZnAl2O4-TiO2 co-doping promoted the Mg4Nb2O9 ceramic densification. The sample (0.7Mg4Nb2O9-(0.3-x)ZnAl2O4-xTiO2) with x = 0.15?0.2 exhibited dielectric constants of 13–14, larger than those of ZnAl2O4, Mg4Nb2O9 and Mg5Nb4O15, due to the NbO6 octahedra distortion resulting from the substitution of Al3+/Ti4+ for Nb5+ in Mg4Nb2O9 and Mg5Nb4O15. The long-range order of the NbO6 octahedra was enhanced by co-doping ZnAl2O4 and TiO2, thereby enhancing the Qxf value. A dielectric constant of 13.1, Qxf value of 366,000 GHz and a τf of ?60.8 ppm/°C were obtained from 1300 °C sintered 0.7Mg4Nb2O9-0.15ZnAl2O4-0.15TiO2. These results show that 0.7Mg4Nb2O9-0.15 ZnAl2O4-0.15TiO2 ceramic is a good candidate for microwave electronic device applications.  相似文献   
55.
During the machining process, cutting forces cause deformation of thin-walled parts and cutting tools because of their low rigidity. Such deformation can lead to undercut and may result in defective parts. Since there are various unexpected factors that affect cutting forces during the machining process, the error compensation of cutting force induced deformation is deemed to be a very difficult issue. In order to address this challenge, this article proposes a novel real time deformation error compensation method based on dynamic features. A dynamic feature model is established for the evaluation of feature rigidity as well as the association between geometric information and real time cutting force information. Then the deformations are calculated based on the dynamic feature model. Eventually, the machining error compensation for elastic deformation is realized based on Function Blocks. A thin-walled feature is used as an example to validate the proposed approach. Machining experiment results show that the errors of calculated deformation with the monitored deformation is less than 10%, and the thickness errors were between ?0.05 mm and +0.06 mm, which can well satisfy the accuracy requirement of structural parts by NC (Numerical Control) machining.  相似文献   
56.
A six-axis vibration isolation system is essential to high-precision space systems for attenuating vibrations on precise instruments. The kinematic optimal design is researched for the space six-axis vibration isolator via Stewart mechanism. Jacobian matrix is the basis of the kinematic performance index. However, the conventional Jacobian matrix is not usually dimensionally homogeneous due to the inhomogeneous physical units, caused by the different mathematical representations of the rotation and translation. In this paper, we propose a dual quaternion approach to derive the dimensionally homogeneous Jacobian matrix of a general six-axis parallel mechanism. Two quaternions are used to parameterize the rotation and translation of the platform. The dimensionally scaling factor for the generalized Jacobian matrix is defined as the ratio of the norms of the two quaternions. The dimensionally homogenous Jacobian matrix is then obtained and applied to the optimal design of the six-axis vibration isolator. The performance index of isotropy is considered to make the isolator minimum kinematic coupling in its working configuration.  相似文献   
57.
Nickel-based superalloy is a typical hard-to-machining material in the aero-engine manufacturing industry. The grindability difference of two kinds of nickel-based superalloys, i.e., equiaxed cast nickel-based superalloy K4125 and wrought nickel-based superalloy Inconel718, are discussed in this article. The influence of grinding parameters (e.g., grinding speed, workpiece speed, and depth of cut) on the grinding force, grinding temperature, and ground surface quality are explored. The results illustrate that under the given grinding conditions, grinding K4125 generates higher forces than Inconel718. The temperature from the K4125 grinding process is beyond 400 °C, while the temperature from grinding on Inconel718 is below 200 °C. Moreover, because of the chip adhesion on the wheel surface when grinding K4125, not only the wheel wear is more severe but also the ground surface of K4125 is worse than that of Inconel718. Accordingly, it could be inferred that the grindability of K4125 is worse than that of Inconel718.  相似文献   
58.
Cutting tool state recognition plays an important role in ensuring the quality and efficiency of NC machining of complex structural parts, and it is quite especial and challengeable for complex structural parts with single-piece or small-batch production. In order to address this issue, this paper presents a real-time recognition approach of cutting tool state based on machining features. The sensitive parameters of monitored cutting force signals for different machining features are automatically extracted, and are associated with machining features in real time. A K-Means clustering algorithm is used to automatically classify the cutting tool states based on machining features, where the sensitive parameters of the monitoring signals together with the geometric and process information of machining features are used to construct the input vector of the K-Means clustering model. The experiment results show that the accuracy of the approach is above 95% and the approach can solve the real-time recognition of cutting tool states for complex structural parts with single-piece and small-batch production.  相似文献   
59.
《Calphad》1988,12(3):225-246
A thermodynamic analysis of phase equilibria in the Fe-Ti, Ti-C, and Fe-C-Ti systems has been carried out. The Gibbs energy has been expressed by the two-sublattice model being separated into the paramagnetic and ferromagnetic terms. In particular, the equilibrium between austenite and NaCl type Ti-carbide has been treated as a portion of the miscibility gap in the fcc phase. The thermodynamic parameters for each phase were evaluated on the basis of experimental phase equilibrium and activity data. The calculated phase boundary of austenite in equilibrium with Ti-carbide exhibited a characteristic shape, not only in the isothermal but also in the vertical section.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号