首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   930篇
  免费   91篇
  国内免费   22篇
电工技术   24篇
综合类   30篇
化学工业   94篇
金属工艺   189篇
机械仪表   274篇
建筑科学   4篇
矿业工程   3篇
能源动力   28篇
轻工业   3篇
武器工业   13篇
无线电   63篇
一般工业技术   130篇
冶金工业   13篇
原子能技术   1篇
自动化技术   174篇
  2023年   59篇
  2022年   44篇
  2021年   49篇
  2020年   66篇
  2019年   37篇
  2018年   42篇
  2017年   60篇
  2016年   74篇
  2015年   63篇
  2014年   76篇
  2013年   88篇
  2012年   95篇
  2011年   62篇
  2010年   30篇
  2009年   35篇
  2008年   12篇
  2007年   27篇
  2006年   37篇
  2005年   10篇
  2004年   6篇
  2003年   8篇
  2002年   8篇
  2001年   9篇
  2000年   5篇
  1999年   10篇
  1997年   1篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1989年   1篇
  1988年   4篇
  1987年   12篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
排序方式: 共有1043条查询结果,搜索用时 15 毫秒
91.
The traditional production scheduling problem considers performance indicators such as processing time, cost, and quality as optimization objectives in manufacturing systems; however, it does not take energy consumption or environmental impacts completely into account. Therefore, this paper proposes an energy-efficient model for flexible flow shop scheduling (FFS). First, a mathematical model for a FFS problem, which is based on an energy-efficient mechanism, is described to solve multi-objective optimization. Since FFS is well known as a NP-hard problem, an improved, genetic-simulated annealing algorithm is adopted to make a significant trade-off between the makespan and the total energy consumption to implement a feasible scheduling. Finally, a case study of a production scheduling problem for a metalworking workshop in a plant is simulated. The experimental results show that the relationship between the makespan and the energy consumption may be apparently conflicting. In addition, an energy-saving decision is performed in a feasible scheduling. Using the decision method, there could be significant potential for minimizing energy consumption.  相似文献   
92.
Electrochemical machining (ECM) is a promising and low-cost process for yielding various components of difficult-to-machine materials, and has been well established in diverse applications. Distributions of gas and temperature affect the electrolyte electrical conductivity and determine the machining accuracy in ECM. Attempts have been made to generate the pulsating flow via a servo-valve in the electrolytic supply pipe, which is introduced to improve the heat transfer, material removal rate and surface profile in ECM. A multi-physics model coupling of electric, heat, transport of diluted species and fluid flow is presented. Simulation results indicate that pulsating flow has a significant impact on the distributions of velocity, gas fraction, and temperature near the workpiece surface along the flow direction. Experiments are conducted to verify the feasibility of the proposed process and study the effects of pulsating flow on material removal rate. The experimental results agree well with the simulations. Using optimal pulsating parameters, the material removal rate and surface profile are enhanced.  相似文献   
93.
94.
The mechanism of material removal in electric discharge grinding (EDG) is very complex due to interdependence of mechanical and thermal energies responsible for material removal. Therefore, on the basis of conceived process physics for material removal, an attempt has been made to predict the material removal rate (MRR). The proposed mathematical model is based on the fundamental principles of material removal in electric discharge machining (EDM) and conventional grinding processes. The inter-dependence of the thermal and mechanical phenomena has been realized by scanning electron microscopy (SEM) characterization of the samples machined at different processing conditions. The key input process parameters like pulse on time, pulse current, gap voltage, duty cycle, pulse off time, frequency, depth of cut, wheel speed and table speed are co-related with MRR for three distinct idealized processing conditions. The constant showing the extent of interdependence of two phenomena were evaluated by experimental data. The obtained expressions of MRR have been validated for processing conditions other than those used for obtaining constants. It was found that the discharge energy plays prominent role in material removal. The percentage difference in experimental findings and theoretical predictions was found to be less than 3%.  相似文献   
95.
《Ceramics International》2016,42(12):13387-13394
Mechanical-machining-induced tearing defects at hole exits restrict the application of C/SiC composites. Rotary ultrasonic machining (RUM) is suitable for hole manufacture in brittle composites, providing reduced tearing size as compared with conventional grinding. Even so, substantial tearing defects at the hole exit remain with RUM. In this study, a novel compound step-taper diamond core drill for RUM of C/SiC was developed to further improve the hole exit quality. Contrastive machining tests were conducted to evaluate the effectiveness of the new type drill. Experimental results show that the compound drill can help reduce the tearing size by 30% on average. Results of variance analysis indicate that there is little dependency of tearing size on processing variables with the compound drill, whereas the common drill shows substantial dependence. Detailed observation of the thrust force reveals that the tearing size reduction using the compound drill is due to the reprocessing effects of its taper face. In the reprocessing process of the taper face, the thrust force gradually decreases at the hole exit. Increasing the ultrasonic amplitude can help further improve the hole exit quality when using our compound drill.  相似文献   
96.
王艳  徐九华  杨路 《光学精密工程》2015,23(7):2031-2042
分析了高速精密磨削9CrWMn冷作模具钢的机理,采用DEFORM软件对高速磨削模具钢9CrWMn过程进行了磨削力仿真。使用高精密高速平面磨床对模具钢9CrWMn进行了高速精密磨削试验,并在线测量了多种工况下的磨削力。结果表明:在其他两组工艺参数不变时,随着工件进给速度增加,磨削力特别是法向磨削力会增大近45%;法向磨削力和切向磨削力随着砂轮的线速度上升而下降,法向磨削力下降近33%;磨削深度对磨削力影响较大,大的磨削深度对法向磨削力的影响尤其显著,可使法向磨削力增大近100%。分析了磨削工艺参数对比磨削能的影响规律,结果显示:随着磨削深度和工件进给速度的增大,比磨削能呈比较明显的下降趋势,符合磨削加工中的尺寸效应;随着砂轮线速度的增大,比磨削能呈上升趋势。最后,对高速磨削前后工件表面的微观形貌进行了对比分析,磨削力试验结果和仿真理论分析相一致。  相似文献   
97.
机器人的惯性参数辨识是基于动力学模型控制器设计的基础,除了需要辨识机器人自身的惯性参数外,还需要快速准确地辨识负载的惯性参数。针对需要更换负载的工作场景,提出了一种快速辨识负载的激励轨迹,该轨迹不需要经过优化,即可在短时间内覆盖更多的机器人运动状态,从而获得更为全面的采样参数集,提高了辨识效率的同时增强了辨识模型的泛化能力。实验表明,辨识的结果与负载模型的CAD参数符合,机器人关节理论力矩能较好地拟合实际驱动力矩,验证了负载参数的正确性。  相似文献   
98.
《Ceramics International》2023,49(10):14957-14963
The high-performance single-phase semiconductor materials with higher ionic conductivity have drawn substantial attention in fuel cell applications. Semiconductor materials play a key role to enhance ionic conductivity subsequently promoting low temperature solid oxide fuel cell (LT-SOFC) research. Herein, we proposed a semiconductor Co doped Y2O3 (YCO) samples with different molar ratios, which may easily access the high ionic conductivity and electrochemical performances at low operating temperatures. The resulting fabricated fuel cell 10% Co doped Y2O3 (YCO-10) device exhibits high ionic conductivity of ∼0.16 S cm−1 and a feasible peak power density of 856 mW cm−2 along with 1.09 OCV at 530 °C under H2/air conditions. The electrochemical impedance spectroscopy (EIS) reveals that YCO-10 electrolyte based SOFC device delivers the least ohmic resistance of 0.11–0.16 Ω cm2 at 530-450 °C. Electrode polarization resistance of the constructed fuel cell device noticed from 0.59 Ω cm2 to 0.28 Ω cm2 in H2/air environment at different elevated temperatures (450 °C to 530 °C). This work suggests that YCO-10 can be a promising alternative electrolyte, owing to its high fuel cell performance and enhanced ionic conductivity for LT-SOFC.  相似文献   
99.
This study investigates wetting of zirconia by Au-Ti alloys containing 0.6–4 wt% Ti in view of brazing zirconia to titanium with pure gold for biomedical applications. Experiments were carried out using sessile and dispensed drop methods under high vacuum at 1040–1250 °C. Bulk drops and Au-Ti / ZrO2 interfaces were characterized by SEM and FEG-SEM with EDXS analysis. While Au does not wet zirconia, the contact angle θ being ∼ 120°, the addition of Ti in Au leads to a significant improvement of wetting due to the formation of a wettable oxide layer at Au-Ti / ZrO2 interface. The nature of this oxide was determined by X-ray diffraction of the reaction layer after the detachment of the droplet from the substrate or after the dissolution of the droplet. The mechanism of formation and growth of the oxide layer and its growth kinetics were determined based on fine analysis of the Au-Ti / oxide layer / ZrO2 interfacial system.  相似文献   
100.
The high grinding temperature is one of the problems restricting on the further development of high-efficiency grinding due to the workpiece burnout and excessive wheel wear. An original method about enhancing heat transfer in the contact zone based on heat pipe technology is put forward to reduce the grinding temperature in this paper. Drawing on the structure of rotation heat pipe, one heat pipe cooling system, heat pipe grinding wheel (HPGW) applied to high-efficiency grinding, is developed and its heat transfer principle is illustrated. Besides, the cooling effect in the contact zone using HPGW is simulated through a three-dimensional heat transfer model in grinding, and the influence of different parameters of the wheel speed, cooling condition, and heat flux input on the grinding temperature is analyzed. Eventually, preliminary grinding experiments with HPGW were carried out to verify the cooling effect by comparing with non-HPGW in grinding of 0.45 wt.% C steel and titanium alloy Ti-6A1-6V. Results show that using HPGW can significantly reduce the grinding temperature and prevent the burnout.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号