首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   428篇
  免费   8篇
  国内免费   15篇
电工技术   4篇
综合类   5篇
化学工业   126篇
金属工艺   57篇
机械仪表   14篇
建筑科学   1篇
矿业工程   2篇
能源动力   93篇
轻工业   5篇
水利工程   2篇
武器工业   1篇
无线电   28篇
一般工业技术   78篇
冶金工业   24篇
原子能技术   4篇
自动化技术   7篇
  2024年   1篇
  2023年   40篇
  2022年   7篇
  2021年   3篇
  2020年   33篇
  2019年   46篇
  2018年   8篇
  2017年   27篇
  2016年   24篇
  2015年   14篇
  2014年   25篇
  2013年   18篇
  2012年   33篇
  2011年   22篇
  2010年   16篇
  2009年   15篇
  2008年   3篇
  2007年   22篇
  2006年   21篇
  2005年   15篇
  2004年   3篇
  2003年   6篇
  2002年   6篇
  2001年   3篇
  2000年   4篇
  1999年   2篇
  1998年   6篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   4篇
  1987年   5篇
  1986年   5篇
  1984年   1篇
  1979年   1篇
排序方式: 共有451条查询结果,搜索用时 15 毫秒
61.
S-doped meso/macroporous g-C3N4 spheres (SMCN) were successfully synthesized via an in situ novel method utilizing millimeter-scale porous silica spheres as template and thiourea as precursor and S source. Such SMCN possessed millimeter-scale spherical morphology with continuous channels at 20–80 nm in the interior of the spheres, and exhibited increased H2 generation rate (15 times) and phenol degradation rate (5 times) under visible light irradiation compared with that over pristine g-C3N4, mainly due to the enlarged surface area, enhanced mass transfer and improved efficiency of charges separation all stemming from the synergetic effects of the S doping and pore creating. Notably, density functional theory (DFT) calculations were employed to further understand the mechanism of the photocatalytic enhancement with regard to the optical absorption property at atomic level. Combined with the finite difference time domain (FDTD) simulations aiming at evaluating the effect of the nanoscale pore architecture on the optical absorption ability, it was revealed that not only the S doping but also the meso/macroporous structure resulted in the enhancement of the optical absorption, which was considered to be an essential role for the enhanced photocatalytic performances over SMCN.  相似文献   
62.
《Ceramics International》2019,45(10):13099-13111
We introduce a facile way to improve the performance of NiCo2O4 electrode by including a Ni seed layer. The seed layer deposited on Ni foam electrode (NiCo2O4/Ni@NF) shows the superior specific capacity of 1142 C g−1 at 1 A g−1 with the excellent cycle stability of ∼96% even after 5000 cycles at a higher current density of 5 A g−1. These values are about 3.7 times higher than that of the electrode (NiCo2O4@NF) without a seed layer, which shows the specific capacity of 305 C g−1@1 A g−1 with cycle stability of 84% even at a lower current density of 1 A g−1. The enhanced performance of the NiCo2O4/Ni@NF electrode may be attributed to lower interface resistance, fast redox reversible reaction, and improved surface active sites. Further, the asymmetric solid-state supercapacitor device is fabricated by using the NiCo2O4/Ni@NF electrode as a positive and reduced graphene oxide (rGO)-Fe2O3 nanograin as a negative electrode with PVA-KOH gel electrolyte, and the NiCo2O4/Ni20@NF//rGO-Fe2O3@NF asymmetric solid state device delivers an areal capacitance of 446 mF cm−2 with a low capacitance loss of 18% even after 10000 cycles. Further, the fabricated asymmetric solid state device shows a maximum energy density of 124.3 Wh cm−2 (at 3.58 kW cm−2) and power density of 14.88 kW cm−2 (at 31.41 Wh cm−2).  相似文献   
63.
The catalytic mechanism and activity of transition metal atom doped C2N (M-C2N, M = Fe, Co, Ni, and Cu) for the oxygen reduction reaction (ORR) are investigated in detail by density functional theory method. All the screened M-C2N are thermodynamically stable based on the binding energy calculations. The adsorption energy results indicate that the adsorption strength of O2 and ORR intermediates are decreased in the order of Fe-C2N ˃ Co-C2N ˃ Ni-C2N ˃ Cu-C2N, in which the adsorption energy values on Cu-C2N are most close to those on the Pt(111). Based on the relative energy diagram of ORR, the energetically favorable pathway on Fe-C2N and Co-C2N is direct 4e mechanism, in which the O–O bond is directly dissociated after the second electron transfer. While for Ni-C2N and Cu-C2N, the most favorable pathway is indirect 4e mechanism, in which the H2O2 is formed as the intermediate product. For all studied M-C2N, the Ni-C2N and Cu-C2N hold better catalytic activity, which could attribute to the contribution of metal atom and part of its activated nitrogen atoms.  相似文献   
64.
《Calphad》1998,22(2):147-155
In direct-chill (DC)-cast 1xxx-and 5xxx-series Al sheet-ingots, the presence of mainly Fe and some Si, and cooling rates increasing from ≤1 °C/s in the ingot center to ~20 °C/s near the surface cause the formation of metastable intermetallic Al6Fe and AlmFe compounds in addition to the stable Al3Fe, and hence the fir-tree defect. Since the Al-Fe and Al-Fe-Si phase diagrams are not useful in predicting the metastable phase formation, a binary phase diagram study was conducted to calculate the Al-Al6Fe and Al-AlmFe metastable phase equilibria using a thermodynamic software and an Al-alloy database. The Al-Al3Fe phase diagram was calculated using the existing Gibbs energy data which gives the eutectic point at 1.85wt% Fe and the eutectic temperature as 654 °C. The missing Gibbs energy data for the metastable phases were estimated using substitutional and graphical methods and the phase diagrams were calculated. In the Al-Al6Fe phase diagram, the eutectic temperature is depressed from 654 °C (equilibrium) to 648 °C and the eutectic point is shifted from 1.85wt% Fe to 3.4wt% Fe. In the Al-AlmFe phase diagram, the eutectic temperature is 643 °C and the eutectic point is at 4.6wt% Fe. The verification of the calculated eutectic temperatures was carried out by DSC measurements which were conducted on samples removed from Al-Fe alloy rods directionally grown in a Bridgman-type solidification furnace. A good agreement is observed between the calculated and measured values.  相似文献   
65.
A method for measuring both dissolved ozone (DO3) concentration and UV absorbance was developed adopting ultraviolet (UV) absorption method (Japan Water Works Association (JWWA), 1993a, Japan Water Works Association (JWWA), 1993b) using sodium thiosulfate (Na2S2O3) solution for removing residual ozone in ozonated water. A DO3 monitor based on this method was tested. This method was proven to be effective from experimental results. The performance of the monitor was examined with continuous ozonated water. As a result, the monitor performed stably during about 2 months, so that both DO3 concentration and UV absorbance in the ozonated water could be accurately measured. Therefore, the authors have proposed the new aquatic control system with this monitor for ozonation.  相似文献   
66.
《Journal of power sources》1998,70(1):114-117
The electrochemical properties of carbon anodes in lithium secondary batteries are improved by the addition of vanadium as V2O5. The action of the added V2O5 is different from that obtained by incorporating a nonmetallic element such as nitrogen, boron, phosphorous or silicon. Because it can increase the distance between the 002 planes of the carbon and act as nucleating agent that promotes the formation of a layer-like carbon structure, V2O5, not only enlarges the carbon anode's reversible capacity of lithium storage but also improves the cycling behavior.  相似文献   
67.
Photocatalytic hydrogen (H2) evolution from water is considered as a prospective approach, which can convert inexhaustible solar energy into chemical energy to alleviate energy crisis and environmental problems. Herein, the N-defective g-C3N4 with porous structure was firstly synthesized in a sealed crucible by one-step thermal polymerization method. The experimental data showed that the yield of the catalyst was obviously increased under sealing condition. Moreover, the N-defective g-C3N4 prepared from urea precursor under sealed condition reached an optimum photocatalytic H2 production rate of 597.4 μmol/h and an apparent quantum efficiency of 15.6% at wavelength of 420 nm. This enhanced photocatalytic H2 production performance is mainly ascribed to the introduction of N-defects, which not only extended of the visible light absorption, but also acted as the electron trap centers to suppress the recombination of the photogenerated electron and hole pairs. This work offers one-step facile strategy for the introduction of N-defects to prepare N-defective g-C3N4 with superior photocatalytic activity, which is also a great substitute for the high-energy consuming and complicated synthetic routes.  相似文献   
68.
Polycrystalline material of various grain sizes of AlSi-alloy containing second-phase particles have been deformed at room temperature in axisymmetric compression. The variation in crystallographic orientation in the as-deformed material was obtained by the Electron Back Scattered Pattern (EBSP) technique in SEM. “Random” and cumulative long range misorientation gradients have been quantified within the matrix (M) and at heterogeneities such as the grain boundary (GB), the triple line region (TL) and in the vicinity of large second phase particles (P) in material compressed to equivalent plastic strains of 0.2 and 0.4. It is shown that the misorientation gradient increases differently in different regions with increasing strain. Maximum values were found in regions expected to be more strained than average in order to accomodate imposed constraint from neighbouring grains or from the presence of large second phase particles. An important feature of the deformed structure seems to be the cumulative rotation of the lattice about an axis close to the 〈111〉-axis in regions with large misorientations.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号