首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1228篇
  免费   5篇
  国内免费   20篇
电工技术   6篇
综合类   5篇
化学工业   448篇
金属工艺   152篇
机械仪表   12篇
建筑科学   3篇
矿业工程   8篇
能源动力   253篇
轻工业   3篇
水利工程   2篇
石油天然气   1篇
武器工业   1篇
无线电   34篇
一般工业技术   250篇
冶金工业   42篇
原子能技术   7篇
自动化技术   26篇
  2023年   141篇
  2022年   50篇
  2021年   17篇
  2020年   115篇
  2019年   123篇
  2018年   6篇
  2017年   53篇
  2016年   51篇
  2015年   59篇
  2014年   98篇
  2013年   59篇
  2012年   41篇
  2011年   20篇
  2010年   22篇
  2009年   48篇
  2008年   13篇
  2007年   41篇
  2006年   48篇
  2005年   27篇
  2004年   11篇
  2003年   17篇
  2002年   23篇
  2001年   22篇
  2000年   16篇
  1999年   22篇
  1998年   9篇
  1997年   3篇
  1996年   8篇
  1995年   10篇
  1994年   9篇
  1993年   7篇
  1992年   6篇
  1991年   5篇
  1990年   7篇
  1989年   2篇
  1988年   8篇
  1987年   12篇
  1986年   15篇
  1985年   6篇
  1984年   2篇
  1983年   1篇
排序方式: 共有1253条查询结果,搜索用时 15 毫秒
11.
《材料科学技术学报》2019,35(10):2144-2155
Ni-Cu nano-coatings were prepared by pulsed electroplating technique in the baths containing various amount of boric acid. Their microstructure, morphologies and corrosion resistance were characterized in detail. The addition of boric acid strongly influences on the microstructure of the Ni-Cu coatings. The coating with a grain size of 130 nm, obtained from the bath containing 35 g L−1 boric acid, shows the highest corrosion resistance. This is attributed to the low-valence Cu ion (Cu+) additions in nickel oxide, which could significantly decrease the oxygen ion vacancy density in the passive film to form a more compact passive film. The higher Cu+ additions and the lower diffusivity of point defects (D0) are responsible for the formation of more compact passive film on the coating obtained from the bath with 35 g L−1 boric acid.  相似文献   
12.
《Thin solid films》2006,494(1-2):228-233
TiO2 materials possessing not only photocatalytic but also electrochromic properties have attracted many research and development interests. Though WO3 exhibits excellent electrochromic properties, the much higher cost and water-sensitivity of WO3 as compared with the TiO2 may restrict the practical application of WO3 materials. In the present study, the feasibility of preparing nanocrystalline porous TiO2/WO3 composite thin films was investigated.Precursors of sols TiO2 and/or WO3 and polystyrene microspheres were used to prepare nanocrystalline pure TiO2, WO3, and composite TiO2/WO3 thin films by spin coating. The spin-coated thin films were amorphous and, after heat treating at a temperature of 500 °C, nanocrystalline TiO2, TiO2/WO3, and WO3 thin films with or without pores were prepared successfully. The heat-treated thin films were colorless and coloration-bleaching phenomena can be observed during cyclic voltammetry tests. The heat-treated thin films exhibited good reversible electrochromic behavior while the porous TiO2/WO3 composite film exhibited improved electrochromic properties.  相似文献   
13.
《Ceramics International》2016,42(7):8385-8394
We report the effect of calcination on the structural and optical properties of nanocrystalline NiO nanoparticles were successfully synthesized by virtue of a single source precursor method at mild reaction conditions between nickel nitrate and sodium hydroxide. Composition, structure and morphology of the products were analyzed and characterized by X-ray powder diffraction (XRD). The ultra-violet visible (UV–vis) absorption peaks of NiO exhibited a large blue shift and the luminescent spectra had a strong and broad emission band centered at 328 nm. The intense band gap was also observed, with some spectral tuning, to give a range of absorption energies from 2.60 to 3.41 eV. The various functional groups present in the NiO nanorods were identified by FTIR analysis. High resolution transmission electron microscopy (HRTEM) and the chemical composition of the samples the valence states of elements were determined by X-ray photoelectron spectroscopy (XPS) in detail. The electrochemical response of NiO proved that the nano-nickel has a high level of functionality due to its small size and higher electrochemical activity without any modifications. The above studies demonstrate the potential for the utilization of NiO nanoparticles as a promising material for opto-electronics applications.  相似文献   
14.
In the present study, NiO and Cu-doped NiO nanoparticles were successfully synthesized by wet chemical method at room temperature using sodium hydroxide (NaOH) as precipitating agent. The as-prepared Cu-doped NiO powder samples were subjected to three different calcination temperatures such as, 350 °C, 450 °C and 550 °C in order to investigate the impact of calcined temperatures on the phase formation, particle size and band gap evolution. The phase formation and crystal structure information of the prepared nanomaterials were examined by X-ray powder diffraction (XRD). XRD revealed the face-centered cubic (FCC) structure. Average crystalline size of pure and doped samples estimated using Scherer formula was found to be 15 nm and 9 nm respectively. With increase in the calcination temperature from 350 °C to 550 °C for the Cu doped NiO samples the particle size of the nanoparticles was found to increase from 4 nm to 9 nm respectively. The optical study for both pure and doped NiO nanoparticles was performed using an UV–Vis spectrophotometer in the wavelength range of 200–800 nm. The strong absorption in the UV region confirms the band gap absorption in NiO and was estimated from the UV–Vis diffuse reflectance spectra via Tauc plot. Systematic studies were also carried out to study the effect of calcination on the optical transmittance. Samples were also investigated using Raman and Fourier Transform Infrared Spectroscopy (FTIR). Furthermore, morphology of the pure NiO and Cu-doped NiO Nanoparticles were examined by scanning electron microscope (SEM).  相似文献   
15.
Two new polyoxometalate(POM)-based entangled coordination networks with chemical formula of [Mn2(H2O)2(BBPTZ)5][SiW12O40] (1) and [Ni2(H2O)2(BBPTZ)5][SiMo12O40]·6H2O (2) (BBPTZ = 4.4′-bis(1,2,4-triazol-1-ylmethyl)biphenyl), were prepared in a hydrothermal reaction system. Compounds 1–2 were characterized by elemental analyses, IR spectroscopy, thermogravimetric analysis, powder X-ray diffraction and single-crystal X-ray diffraction. In compound 1, dangling arms thread in quadrangular window of the adjacent 2-D layers, thus resulting in a rare 2-D  3-D polythreading motif. Compound 2 exhibits a rare 2-D  3-D zipper-closing motif. Using the degradation of methylene blue (MB) as the model, the photocatalytic activities of compounds 1–2 were investigated. Both compounds show efficient catalytic activity for the degradation of MB with the order of 2 > 1. It is found that the POM species of compounds 1–2 play the main role in the photocatalytic degradation process.  相似文献   
16.
A new kind of polymer composite, produced from the typical polybenzoxazine and 0–30 wt-% native and silane-treated aluminium nitride (T-AlN), was investigated. The mechanical tests revealed a significant increase in the microhardness and flexural properties upon adding the T-AlN particles compared to that obtained from the untreated ones. By adding 0–30 wt-% T-AlN, the tensile moduli were accurately reproduced by the Halpin-Tsai and Nielsen models. At 30 wt-% T-AlN, dynamic mechanical analysis showed a significant increase in the storage moduli and the glass transition temperature (Tg), reaching 3.2?GPa and 217°C, respectively. The thermal stability of these materials was significantly improved upon the addition of the T-AlN fillers. These improvements are attributed to the high thermal and mechanical properties of the fillers and their good dispersion and adhesion in and to the matrix as revealed by a morphological analysis.  相似文献   
17.
The adsorption and activation of gas molecules are investigated substantially in solid-gas heterogeneous catalysis. Here we investigated the interaction between gas molecules and unique two-dimensional monolayer Au (111) structure using density functional theory. It is found that CO2, H2O, N2 and CH4 molecules are weakly adsorbed on the surface with the adsorption energies between ?0.150 and ?0.250 eV due to van der Waals interaction. While CO, NO, NO2, and NH3 molecules are adsorbed more stably with the adsorption energies between ?0.300 and ?0.470 eV. Especially, the bond length of CO is stretched by 0.038 Å and the bond angle of NO2 is obviously enlarged by 10.460°. The activation originates from the rearrangement of molecule orbitals and the orbitals hybridization between the partial orbitals of gas molecules and Au-5d orbitals. The fundamental analyses of adsorption mechanism and electronic properties may provide guidance for the applications of two-dimensional monolayer metal catalysis.PACSnumbers 73.22.-f, 73.61.-r  相似文献   
18.
Oxygen evolution reaction (OER) electrocatalysts play the critical role in efficiency and durability for different hydrogen production systems. We have successfully synthesized the earth abundant WO3 coupled with IrO2 as mixed oxide composite by a facile two-step chemical method. 50% reduction in noble metal contents (IW-50) followed by two times enhancement in activity, four-folds increase in bulk mass specific activity along with the stability of mixed oxide composite as compared to state –of –the art IrO2 catalyst are affirmed. Superior performance of mixed oxide composites are perceived due to four times increase in electrochemical surface area, reduction of Tafel slope, four-fold increase of turn over frequency, electronic distortion in Ir-4f spectrum of IW-50 along with the bridging of lattice oxygen atoms between iridium and tungsten metals. We believe that it would open up the new avenues for effective utilization of noble metal with high valence tungsten metal in corrosive environment.  相似文献   
19.
20.
The nanostructure and mechanical properties of ferritic-austenitic duplex stainless steel subjected to hydrostatic extrusion were examined. The refinement of the structure in the initial state and in the two deformation states (ε = 1.4 and ε = 3.8) was observed in an optical microscope (OM) and a transmission electron microscope (TEM). The results indicate that the structure evolved from microcrystalline with a grain size of about 4 μm to nanocrystalline with a grain size of about 150 nm in ferrite and 70 nm in austenite. The material was characterized mechanically by tensile tests performed in the two deformation states. The ultimate strength appeared to increase significantly compared to that in the initial deformation stages, which can be attributed to the grain refinement and plastic deformation. The heterogeneity observed in microregions results from the dual-phase structure of the steel. The results indicate that hydrostatic extrusion is a highly potential technology suitable for improving the properties of duplex steels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号