首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   475篇
  免费   7篇
  国内免费   10篇
电工技术   1篇
综合类   2篇
化学工业   141篇
金属工艺   93篇
机械仪表   14篇
建筑科学   2篇
矿业工程   4篇
能源动力   63篇
轻工业   1篇
石油天然气   1篇
无线电   22篇
一般工业技术   106篇
冶金工业   25篇
原子能技术   2篇
自动化技术   15篇
  2023年   47篇
  2022年   9篇
  2021年   19篇
  2020年   42篇
  2019年   30篇
  2018年   7篇
  2017年   19篇
  2016年   21篇
  2015年   22篇
  2014年   34篇
  2013年   29篇
  2012年   26篇
  2011年   19篇
  2010年   4篇
  2009年   19篇
  2008年   3篇
  2007年   15篇
  2006年   29篇
  2005年   5篇
  2004年   8篇
  2003年   11篇
  2002年   6篇
  2001年   16篇
  2000年   6篇
  1999年   6篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1988年   2篇
  1987年   7篇
  1986年   6篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1979年   2篇
  1976年   1篇
排序方式: 共有492条查询结果,搜索用时 31 毫秒
31.
In this work, we evaluate springback using U-form stretch bending tests. Tests are carried out on aluminum alloy test pieces using an experimental set up made in our laboratory. This apparatus can be mounted on a tensile testing machine and gives the possibility to vary several parameters. We show the role played by certain factors such as die radius of curvature, blank holding force (BHF) and stretching depth. Springback and sliding at extremities are strongly influenced by these technological and geometrical parameters. In this work we also show the gradual decrease of springback with the increase of stretching depth. The radius of curvature of the die can remarkably influence the two stages of springback.  相似文献   
32.
纳米压痕技术在材料力学测试中的应用   总被引:2,自引:0,他引:2  
近年来,材料纳米级力学测试日益引起广大研究者的重视。纳米压痕仪凭借极高的载荷和位移分辨率,广泛应用于材料表面的微纳米级力学性能的测试,包括硬度、弹性模量、塑性应变、薄膜界面结合强度以及材料疲劳特性等。综述了几种纳米压痕和纳米冲击技术测试材料力学性能的方法和原理,介绍了纳米压痕技术在材料力学性能测试方面的若干先进应用实例及其测试机理,以及原子力显微镜和扫描探针显微镜在力学测试方面的原理和应用。最后,提出了纳米压痕仪存在的若干问题,并对纳米压痕技术的发展进行了展望,认为纳米压痕技术结合有限元模拟建立材料疲劳断裂模型,是纳米压痕在力学测试方面发展的必然趋势。  相似文献   
33.
Composites of Cf/Ti5Si3 were prepared by spark plasma sintering a mixture of TiC-coated short carbon fiber and pre-synthesized Ti5Si3 powder. The TiC coating protects the Cf and mediates a mild interdiffusion process between Cf and Ti5Si3, rather than an exothermic reaction. Compared with traditional in-situ fabrication, the use of a pre-synthesized Ti5Si3 powder as a raw material mitigated heat release from the Ti-Si reaction and consequent grain overgrowth. The spark plasma sintering process was completed within 15 min and the relative density of the product reached 99.2 %. The Cf/Ti5Si3 composite achieved a high fracture toughness of 7.57 MPa m1/2 and a flexural strength of 518.3 MPa, which reflected increases of 255 % and 270 %, respectively, compared with those properties of monolithic Ti5Si3. These improvements are attributable to the effects of the carbon fiber reinforcement, the TiC protective coating on the Cf, inhibition of grain overgrowth, and control of interfacial reaction.  相似文献   
34.
Double ceramic layer (DCL) TBCs consisting of a top 20 wt.% Al2O3-7YSZ layer and a bottom 7YSZ layer were desirably designed to achieve preferable performance while the thermal, mechanical and thermal cyclic properties were comprehensively investigated. Compared to the conventional 7YSZ TBCs, the thermal insulation properties of the DCL coating were significantly improved due to the increased oxygen vacancy concentration induced by Al2O3 addition while the thickness of the thermally grown oxides was diminished by the decreased oxygen diffusion rate. Furthermore, the improved fracture toughness of the DCL coating also prolonged the thermal cyclic life.  相似文献   
35.
Silicon nitride (Si3N4) is an excellent engineering ceramic with high strength, fracture toughness, wear resistance, and good chemical and thermal stability. Recently, the enhanced thermal conductivity enables Si3N4 to have potential application prospects in the electronic and orthopedic fields. Metal bonding with Si3N4 is often the key to these applications. Here we report a facile approach for the titanium-activated Cu bonding on Si3N4 substrates using an atmosphere plasma spray (APS) process. With X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) observation, it was shown that the interaction between the pre-bonded Ti (by APS) on Si3N4 promoted the adhesion and high bonding strength of APS Cu on Si3N4. The interfacial structure and phases were characterized, and tensile strength, electrical resistivity, thermal conductivity, and residual stress of Cu bonded Si3N4 were measured accordingly. The APS deposited Cu layer is dense, has a high purity, and is joined firmly with Ti pre-bonded Si3N4 substrate. The maximum tensile strength between Cu and Si3N4 is as high as 89.4 MPa. The Si3N4 substrate bonded with highly dense Cu demonstrates a low surface resistivity of 8.72 × 10−4 Ω∙mm, and high thermal conductivity of 98.12 W/m·K, which shows potential applications in electronic devices.  相似文献   
36.
In this work, pure ZrB2-SiC composite powders were obtained using ZrO2, SiO2, B4C and carbon black as raw materials via a boro/carbothermal reduction (BCTR) reaction process at 1500 °C for 2 h in vacuum condition. Based on this finding, porous ZrB2-SiC ceramics were in-situ synthesized via a novel and facile boro/carbothermal reaction process templated pore-forming (BCTR-TPF) method. The phase composition, linear shrinkage, and pore size distribution were also methodically studied. Results show that the porous ZrB2-SiC ceramics with controllable porosity of 67–78%, compressive strength of 0.2–9.8 MPa and thermal conductivity of 1.9–7.0 W·m−1K−1 can be fabricated by varying of ZrO2 and B4C particle sizes. The formation of ZrB2 grains was controlled via solid-solid and solid-liquid-solid growth mechanisms, the growth process of SiC grains was mainly regulated by solid-solid, vapor-vapor and vapor-solid growth mechanisms during the overall synthesis process. Finally, the pore-forming mechanism of porous samples prepared via the BCTR-TPF method was gases combined with template pore-forming mechanism, i.e., B4C and carbon black acted as pore-forming templates, and gaseous products generated in the BCTR reaction were also applied as gas pore-forming agent.  相似文献   
37.
38.
The electrophoretic deposition of alumina and zirconia powders from isopropanolic suspension in the presence of monochloroacetic acid was studied in the constant-current regime. The different levels of electric current during deposition from 250 μA to 48 mA were used. The green density of the deposit depends on the current density and then on the particle velocity during deposition, reaching values from 58% to 61% according to the electric current used. It was found that the lower the green density of the green deposit, the larger the pores. The low green density led to low final fired density and subsequently to the low Vickers hardness HV5 ranging from 2000 to 1650 depending on electric current used. Based on these findings microlaminates having various thickness ratios to achieve different residual stress levels were prepared consisting of alternating layers of alumina and zirconia.  相似文献   
39.
The novel half-metallocene zirconium (IV) bearing quinoline-amino-phenolate tridentate ligand (Zr1) was synthesized and characterized by elemental analysis, NMR spectroscopy, and X-ray crystallography. The complex Zr1, upon activation with MAO, proved active in the polymerization of ethylene (26-2015 kg of PE/mol[Zr]·h 1), yielding high-density polyethylenes with molecular weight varying from 129 to 364 × 103 g·mol 1. Complex Zr1 was also tested in the copolymerization of ethylene with 1-hexene affording high molecular weight poly(ethylene-co-1-hexene) with low comonomer incorporation (1.0–1.9%).  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号