首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1396篇
  免费   37篇
  国内免费   94篇
电工技术   2篇
综合类   10篇
化学工业   420篇
金属工艺   352篇
机械仪表   19篇
建筑科学   4篇
矿业工程   40篇
能源动力   136篇
武器工业   1篇
无线电   13篇
一般工业技术   288篇
冶金工业   169篇
原子能技术   9篇
自动化技术   64篇
  2023年   195篇
  2022年   97篇
  2021年   43篇
  2020年   107篇
  2019年   147篇
  2018年   51篇
  2017年   74篇
  2016年   53篇
  2015年   45篇
  2014年   84篇
  2013年   72篇
  2012年   36篇
  2011年   27篇
  2010年   23篇
  2009年   39篇
  2008年   21篇
  2007年   38篇
  2006年   38篇
  2005年   21篇
  2004年   19篇
  2003年   37篇
  2002年   28篇
  2001年   35篇
  2000年   30篇
  1999年   28篇
  1998年   7篇
  1997年   3篇
  1996年   5篇
  1995年   5篇
  1994年   16篇
  1993年   11篇
  1992年   15篇
  1991年   10篇
  1990年   10篇
  1989年   6篇
  1988年   21篇
  1987年   26篇
  1986年   4篇
排序方式: 共有1527条查询结果,搜索用时 15 毫秒
11.
Zn–Cu–Sr alloys play a crucial role in the development of biodegradable implant materials based on zinc. The current study aimed to investigate the phase equilibria of the Zn–Cu–Sr ternary system in the Cu–Zn-rich region, through experimental analysis. For this purpose, fifteen and fourteen samples were respectively prepared and equilibrated at 350 and 400 °C, to determine the isothermal sections. The equilibrated alloys were then subjected to various analytical techniques such as scanning electron microscopy (SEM) equipped with energy dispersive spectrometry analysis (EDS), electron probe microanalysis (EPMA), and powder X-ray diffraction analysis (XRD). The analysis revealed the presence of five three-phase equilibria and ten two-phase equilibria in the two isothermal sections. Differential scanning calorimetry (DSC) was used to investigate the phase transformation temperature with constant values of 8 at. % Sr and 30 at. % Cu. The obtained experimental results were used to perform a thermodynamic assessment of the Zn–Cu–Sr system especial in Zn-rich region using the calculation of phase diagrams (CALPHAD) method. The modified quasi-chemical model (MQM) was used to model the liquid solution, while the compound energy formalism (CEF) was used to represent Gibbs free energies of the solid phases. The present obtained thermodynamic parameters were found to accurately reproduce the experimentally measured phase relationships in the Zn–Cu–Sr ternary system.  相似文献   
12.
Antibacterial elements and non-contact heating abilities have been proven effective for antibacterial and antibiofilm activities, but it remains a challenge to integrate both within one material. Herein, assisted by the high-entropy effect, FeNiTiCrMnCux high-entropy alloy nanoparticles (HEA-NPs) with excellent photothermal heating properties for boosting antibacterial and antibiofilm performances are synthesized. Benefitting from the synergetic effect of copper ions released and thermal damage by the HEA-NPs, more reactive oxygen species (ROS) are generated, leading to the rupture of the cell membranes and the eradication of the biofilms. As a result, the antibiofilm efficiency (400 µg mL−1) of the mostly optimized FeNiTiCrMnCu1.0 HEA-NPs in the marine nutrient medium, which is the worst-case scenario for the antimicrobial material, can be improved from 81% to 97.4% under 30 min solar irradiation (1 sun). The present study demonstrates a new strategy for effectively treating marine microorganisms that cause biofouling and microbial corrosion using HEA-NPs with photothermal heating characteristics as an antibacterial auxiliary.  相似文献   
13.
The corrosion behavior of 2A02 Al alloy under simulated marine atmospheric environment has been studied using mass-gain, scanning electron microscope/energy dispersive spectroscopy (SEM/EDS), laser scanning confocal microscopy, X-ray diffraction spectroscopy and localized electrochemical methods. The results demonstrate that the relationship between the corrosion induced mass-gain and the corrosion time is in accordance with the power rule. The mass-gain increases gradually during the corrosion time, while the corrosion rate decreases. With ongoing of the corrosion, corrosion products film changed from a porous to a compact structure. The various spectroscopic data show that the corrosion products films composed mainly of Al(OH)3, Al2O3 and AlCl3. The electrochemical corrosion behavior of the 2A02 Al alloy was studied by electrochemical impedance spectroscopy (EIS).  相似文献   
14.
《材料科学技术学报》2019,35(6):1064-1073
The oxide dispersion strengthened (ODS) steel with the nominal composition of Fe–14Cr–2W–0.3Ti–0.2V–0.07Ta–0.3Y2O3 (wt%) was fabricated by mechanical alloying and hot isostatic pressing (HIP). In order to optimize the relative volume fraction of secondary phases, the as-HIPed ODS steel was annealed at 800 °C, 1000 °C, 1200 °C for 5 h, respectively. The microstructures and different secondary phases of the as-HIPed and annealed ODS samples were identified by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The tensile properties of all the ODS steels at room temperature were also investigated. The results indicate that annealing is an effective way to control the microstructure and the integral secondary phases. The annealing process promotes the dissolution of M23C6 particles, thus promoting the precipitation of TiC. No obvious coarsening of Y2Ti2O7 nanoparticles can be observed during annealing. The tensile results indicate that the annealed ODS sample with the optimized secondary phases and high density possesses the best mechanical properties.  相似文献   
15.
16.
《材料科学技术学报》2019,35(9):1966-1976
Oxide powders of Zr1–xTixO2 (x = 0–1) solid solutions with micron-sized particles were synthesized via a solution combustion method. The synthesis process and Zr/Ti molar ratio were optimized to produce powders with the tetragonal crystal structure. X-ray diffraction, Raman spectroscopy and transmission electron spectroscopy results confirm that a full crystallization microstructure with the single tetragonal phase is obtained after calcination at 600 °C while maintaining the crystallite size <30 nm. Zr/Ti oxide mixtures with Zr ≥ 67 mol% exhibit a tetragonal crystal structure and the embedding Ti in ZrO2 improves the structure stability. The nitrogen sorption results indicate that the powders possess mesoporous morphology with medium specific surface areas (∼10–50 m2/g). Chemical stability tests show that these powders are relatively stable with negligible removal of titanium and zirconium after elution by 0.5 mol/L HCl. Density functional theory was used to calculate the most stable structure with low energy for the selected composition.  相似文献   
17.
《材料科学技术学报》2019,35(10):2163-2168
CBN/Cu-Sn-Ti (CBN: cubic boron nitride) composites are prepared by active brazing sintering at 1123 K, 1173 K, 1223 K and 1273 K, respectively. The effects of brazing temperature on the wettability, interfacial characteristics, and elemental distribution variations are fully investigated. When the brazing temperature is below 1223 K, completely uncoated and/or partially coated CBN particles with sharp edges can still be observed, and the reaction layer, mainly composed of TiN and TiB2, appears to be thin and uneven. When the brazing temperature is 1223 K, all CBN particles are completely coated, suggesting that adequate wetting has taken place. Besides, as Ti diffuses thoroughly and enriches the interface, the reaction layer, filled primarily by TiN, TiB2 and TiB, becomes thicker (about 1.30 μm), more uniform, stable and continuous. Further increasing the temperature to 1273 K is unnecessary or even harmful as the reaction layer thickness undergoes negligible change yet some tiny micro-cracks appear on the interface, which may likely deteriorate the grinding capability of the final brazing products.  相似文献   
18.
《材料科学技术学报》2019,35(10):2345-2356
The corrosion kinetics and patina (corrosion products) layer evolution of galvanized steel submitted to wet/dry cyclic corrosion test in a simulated coastal-industrial atmosphere was investigated. The results show that zinc coating has a greater corrosion rate during the initial period and a lower corrosion rate during the subsequent period, and the patina composition and structure can greatly affect the corrosion kinetics evolution of zinc coating. Moreover, Zn5(OH)6(CO3)2 and Zn4(OH)6SO4 are identified as the main stable composition and exhibit an increasing relative amount; while Zn12(OH)15Cl3(SO4)3 cannot stably exist and diminish in the patina layer as the corrosion develops.  相似文献   
19.
《材料科学技术学报》2019,35(10):2144-2155
Ni-Cu nano-coatings were prepared by pulsed electroplating technique in the baths containing various amount of boric acid. Their microstructure, morphologies and corrosion resistance were characterized in detail. The addition of boric acid strongly influences on the microstructure of the Ni-Cu coatings. The coating with a grain size of 130 nm, obtained from the bath containing 35 g L−1 boric acid, shows the highest corrosion resistance. This is attributed to the low-valence Cu ion (Cu+) additions in nickel oxide, which could significantly decrease the oxygen ion vacancy density in the passive film to form a more compact passive film. The higher Cu+ additions and the lower diffusivity of point defects (D0) are responsible for the formation of more compact passive film on the coating obtained from the bath with 35 g L−1 boric acid.  相似文献   
20.
《材料科学技术学报》2019,35(8):1681-1690
The heat-affected zone (HAZ) of electron beam welded (EBW) joint normally undergoes a unique heat-treating process consisting of rapid temperature rising and dropping stages, resulting in temperature-gradient in HAZ as a function of the distance to fusion zone (FZ). In the current work, microstructure, elements distribution and crystallographic orientation of three parts (near base material (BM) zone, mid-HAZ and near-FZ) in the HAZ of Ti-6Al-4V alloy were systematically investigated. The microstructure observation revealed that the microstructural variation from near-BM to near-FZ included the reduction of primary α (αp) grains, the increase of transformed β structure (βt) and the formation of various α structures. The rim-α, dendritic α and abnormal secondary α (αs) colonies formed in the mid-HAZ, while the “ghost” structures grew in the near-FZ respectively. The electron probe microanalyzer (EPMA) and electron back-scattered diffraction (EBSD) technologies were employed to evaluate the elements diffusion and texture evolution during the unique thermal process of welding. The formation of the various α structures in the HAZ were discussed based on the EPMA and EBSD results. Finally, the nanoindentation hardness of “ghost” structures was presented and compared with nearby βt regions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号