首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   5篇
  国内免费   4篇
电工技术   1篇
综合类   2篇
化学工业   56篇
金属工艺   28篇
机械仪表   1篇
建筑科学   1篇
矿业工程   1篇
能源动力   1篇
无线电   11篇
一般工业技术   37篇
冶金工业   17篇
原子能技术   1篇
自动化技术   4篇
  2023年   21篇
  2022年   11篇
  2021年   4篇
  2020年   9篇
  2019年   6篇
  2018年   11篇
  2017年   8篇
  2016年   6篇
  2015年   1篇
  2014年   8篇
  2013年   9篇
  2012年   12篇
  2011年   5篇
  2010年   6篇
  2009年   3篇
  2008年   1篇
  2007年   7篇
  2006年   5篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有161条查询结果,搜索用时 12 毫秒
11.
(0.95–x) BaTiO3–0.05 BiYbO3x BiFeO3 (x?=?0, 0.01, 0.02, and 0.04) (abbreviated as (0.95–x) BT–0.05 BY–x BFO) ceramics were fabricated by conventional sintering (CS) and microwave sintering (WS) methods. Effects of sintering method and BFO dopant on the microstructure and electric properties of (0.95–x) BT–0.05 BY–x BFO ceramics were comparatively investigated. X-ray diffraction showed that all CS and WS samples presented a single perovskite phase. It was also found that WS ceramics possessed denser microstructure and finer grains compared to CS samples as indicated by the surface morphology characterization. Dielectric measurements revealed that all samples exhibited the weak relaxation behavior; however, the degree of relaxation behavior of BT–BY based ceramic could be strengthened by addition of BFO and by WS method. Moreover, the temperature and frequency stability could be improved with doped BFO. The density of 0.93BT–0.05BY–0.02BFO ceramic was found to be the largest while that of 0.94BT–0.05BY–0.01BFO ceramic was the smallest, thus, the dielectric constant of 0.93BT–0.05BY–0.02BFO was significantly larger than that of 0.94BT–0.05BY–0.01BFO and 0.94BT–0.05BY–0.04 BFO ceramics. minimum dielectric constant of (0.95–x) BT–0.05 BY–x BFO ceramic was obtained at x?=?0.01. Ferroelectric measurements indicated that all samples showed the slim hysteresis loop. The remnant polarization (Pr) and coercive field (EC) of (0.95–x) BT–0.05 BY–x BFO ceramics first decreased and then increased with increasing x,the minimum values were obtained at x?=?0.01. Moreover, Pr and EC of WS ceramics were slightly larger than those of CS ceramics, indicating that higher density and larger grain sizes contributed to enhancing the ferroelectric characteristic. These findings indicate that addition of moderate amount of BFO and use of WS technique can strengthen the degree of relaxation behavior and improve the ferroelectric properties of BT–BY based ceramics.  相似文献   
12.
13.
BaTiO3–(Ni0.5Zn0.5)Fe2O4 composites prepared by co-precipitation were investigated. The macroscopic magnetic properties derived from the magnetic phase (low coercivity, almost no M(H) hysteretic behavior and high permeability) are preserved in the composite. The dielectric properties are strongly influenced by interface phenomena (Maxwell-Wagner), due to the local electrical inhomogeneity. At low frequencies, the composites present thermally activated conductivity and relaxation, while at 1 MHz permittivity of around 500 and tan δ < 8% is obtained at room temperature. The multiferroic character was demonstrated at nanoscale by the presence of the magnetic and ferroelectric domain structure in the same region. Imprint polarisation in the regions corresponding to the ferroelectric phase is found, as result of an internal electrical field created at the interfaces between the (Ni,Zn)-ferrite and BaTiO3 regions.  相似文献   
14.
The deformation behaviors of as-sintered CNT/Al-Cu composites were investigated by isothermal compression tests performed in the temperature range of 300?550 °C and strain rate range of 0.001?10 s?1 with Gleeble 3500 thermal simulator system. Processing maps based on dynamic material model (DMM) were established at strains of 0.1?0.6, and microstructures before and after hot deformation were characterized by scanning electron microscopy (SEM), electron backscatter diffraction (EBSD) and high-resolution transmission electron microscopy (HRTEM). The results show that the strain has a significant influence on the processing maps, and the optimum processing domains are at temperatures of 375?425 °C with strain rates of 0.4?10 s?1 and at 525?550 °C with 0.02?10 s?1 when the strain is 0.6. An inhomogeneous distribution of large particles, as well as a high density of tangled dislocations, dislocation walls, and some sub-grains appears at low deformation temperatures and strain rates, which correspond to the instability domain. A homogeneous distribution of fine particles and dynamic recrystallization generates when the composites are deformed at 400 and 550 °C under a strain rate of 10 s?1, which correspond to the stability domains.  相似文献   
15.
《Optical Materials》2008,30(12):1741-1745
Single crystal of Yb:GdYAl3(BO3)4(Yb:GdYAB) has been grown by the flux method. The structure of Yb:GdYAB crystal has been determined by X-ray diffraction analysis. The experiment show that the crystal has the same structure as that of YAl3(BO3)4 crystal and its unit cell constants have been measured to be a = 9.30146 Å, c = 7.24164 Å, Vol = 542.59 Å3. The absorption and fluorescence spectrum of Yb:GdYAl3(BO3)4 crystal have also been measured at room temperature. In the absorption spectra, there are two absorption bands at 938 nm and 974 nm, respectively, which is suitable for InGaAs diode laser pumping. In the fluorescence spectra, there are two fluorescence peaks at 992 and 1040 nm. The thermal properties of Yb:GdYAl3(BO3)4 crystal have been studied for the first time. The thermal expansion coefficient along c-axis is almost 5.4 times larger than that along a-axis. The specific heat of the crystal has been measured to be 0.77 J/g °C at room temperature. The calculated thermal conductivity is 5.26 Wm−1 K−1 along a-direction.  相似文献   
16.
The thermal shock resistance of ceramics depends on the materials mechanical and thermal properties, also is affected by component geometry and external factors and so on. Therefore, the thermal shock resistance of ceramic materials is the comprehensive performance of their mechanical and thermal properties corresponding to the various heat conditions and external constraints. In the present work, a thermal shock resistance model of the ultra-high temperature ceramics which considered the effects of thermal environment and constraints was established. With this model, the influence of constraints on the thermal shock resistance and critical fracture temperature difference had been studied and an effective idea to improve thermal shock resistance for ceramic material and structure was found. Furthermore, the model was validated by finite element method.  相似文献   
17.
The present work was carried out to estimate the fracture toughness of two types of Al2O3 fibers (85Al2O3–15SiO2, Altex® (Sumitomo Chemical Co., Ltd) and α-Al2O3, Almax® (Mitsui Mining Co., Ltd)) and to elucidate the transition from the intrinsic defects-induced fracture to introduced notch-induced one. With an application of the focused-ion (Ga+)-beam micromachining method, a mode I type straight-fronted edge notch with a notch-tip radius around 25 nm was introduced in fiber specimen. The fracture toughness KIc was estimated for each fiber specimen based on the fracture mechanical approach in which the measured values of notch depth, fiber diameter, fracture strength and calculated correction factor were substituted. The fracture toughness values of the 85Al2O3–15SiO2 and α-Al2O3 fibers were estimated to be 1.86 ± 0.24 and 2.05 ± 0.13 MPa m1/2, respectively. The fracture toughness value was almost independent of the fiber diameter and notch depth in both fibers tested. From the obtained fracture toughness value and the measured fracture strength of the original fiber, the notch depth at the transition from intrinsic defects-induced fracture to notch-induced one, corresponding to the equivalent size of the intrinsic defects that determines the strength of the original fiber, were estimated to be 0.3 and 0.8 μm for 85Al2O3–15SiO2 and α-Al2O3 fibers, respectively.  相似文献   
18.
采用润湿平衡法测量了四种Sn基钎料(Sn-37Pb、Sn-3.OAg-0.5Cu、Sn-0.7Cu与Sn-9Zn)分别在250,260和270℃与Cu、Al两种基板的润湿性能.结果表明:钎料与Al基板的润湿时间均比Cu基板长,除Sn-9Zn外,其他三种钎料与Cu基板的润湿力比Al基板大,并且随着温度升高,润湿性能提高,...  相似文献   
19.
20.
基于无限长的单畴圆柱体的微波进动方程,推导了玻璃包覆磁性合金微丝内芯区的微波磁导率,模拟了Fe基合金微丝外壳区的微波磁导率并分析了合金微丝外壳区自然铁磁共振频率的影响因素.根据理论分析结果,模拟了典型的玻璃包覆磁性合金微丝内芯区和外壳区的微波相对复磁导率以及几何尺寸改变时玻璃包覆合金微丝的自然铁磁共振频率的变化规律,探讨了几何尺寸对玻璃包覆磁性合金微丝的自然铁磁共振频率的影响规律.结果表明,微丝合金内芯的自然铁磁共振频率主要依赖于合金的饱和磁化强度,Fe基合金微丝合金外壳层的自然铁磁共振频率依赖于磁各向异性等效场,自然铁磁共振频率可以通过改变合金微丝的几何尺寸而控制.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号