首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   242篇
  免费   4篇
  国内免费   9篇
电工技术   1篇
化学工业   84篇
金属工艺   68篇
机械仪表   18篇
能源动力   9篇
轻工业   1篇
无线电   10篇
一般工业技术   51篇
冶金工业   4篇
原子能技术   2篇
自动化技术   7篇
  2023年   19篇
  2022年   3篇
  2021年   8篇
  2020年   16篇
  2019年   23篇
  2018年   14篇
  2017年   19篇
  2016年   20篇
  2015年   15篇
  2014年   19篇
  2013年   17篇
  2012年   10篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   5篇
  2006年   7篇
  2005年   5篇
  2004年   5篇
  2003年   3篇
  2002年   6篇
  2001年   5篇
  2000年   3篇
  1999年   6篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1988年   2篇
  1987年   6篇
  1986年   3篇
  1985年   2篇
排序方式: 共有255条查询结果,搜索用时 15 毫秒
111.
Developing low-cost, stable, and robust electrocatalysts is significant for high effective hydrogen evolution reaction (HER). In this work, a coating system with Cu2O/NiMoCu on stainless steel (SS) is employed as a highly active and stable catalyst for HER in acidic solutions. Electrochemical measurements for as-designed system on SS show a low onset overpotential, small Tafel slope of ~32 mV/decade and long-term durability over 7 days of HER operation. To further inspections of electrocatalytic behavior of as-prepared system in HER, the EIS measurements are performed at several overpotentials and temperatures. It is found that high hydrogen evolution activity and stability of Cu2O/NiMoCu hybrid is likely due to special morphology of Cu2O which result in large number of active sites for hydrogen adsorption, and a synergetic effect giving electronic structure suitable for the HER.  相似文献   
112.
In last years, optical metrology due to its capability in miniaturization and sensitivity became the primary solution in measurement of complex geometries and fragile pieces. Here, we propose a promising approach to perform highly accurate distance measurements using low-coherence fiber-optic sensors for quality inspection of nozzle orifices in fuel injection systems. In this effort, we develop an adaptive image processing algorithm in MATLAB and install the necessary hardware on a form tester to accelerate and simplify the aligning process. As a result, the repeatability of measurements is one order of magnitude improved while the standard deviation is almost 60% reduced.  相似文献   
113.
Sputter-deposited MoS2 films have been often used as dry lubricant in various industrial fields, such as space application and much attention has been paid to reduction of friction coefficient and improvement of mechanical properties in recent decades. One way to achieve this is to deposit a MoS2 film doped with another metal. The MoSx-metal films were found to be denser, more adhesive and more oxidation-resistant than pure MoS2. In this study, MoSx-Ta composite films were synthesized by Electron Cyclotron Resonance microwave source enhanced DC sputtering with different target powers. The effects of doping Ta on mechanical properties of MoSx-Ta films were investigated. The morphology and structure of films were investigated using a scanning electron microscope (SEM), X-ray diffraction (XRD) and atomic force microscopy (AFM). The microhardness was evaluated using microhardness test instrument, and the adhesion strengths were obtained using a scratch tester. The results showed that the S/Mo ratio was influenced by the dc sputtering target power. Typical MoS2 (100) (103) (002) orientations were present in pure MoSx films, but disappeared with the increase in doped Ta, with the S/Mo content ratios decreasing from 1.52 to 0.84, and the hardness increasing from 3.55 to 15.23 GPa. The roughness and surface topography, friction coefficient and adhesion were significantly affected by the Ta, Mo and S content. The content of doped Ta plays a dominant role on the change in the Mo/S ratio, thereby influencing the mechanical and tribological properties of the MoSx-Ta composite films.  相似文献   
114.
Corrosion protection arising from epoxy coatings incorporating lignosulfonate-doped polyaniline (Pani-LGS) upon AA2024-T3 was studied in 0.6 M NaCl. Synthesized Pani-LGS particles were investigated using TEM, FTIR, TGA and conductivity, whilst coatings were also physically examined using SEM. The coating performance was studied using a combination of potentiodynamic polarisation, EIS, FTIR spectroscopy and X-ray photoelectron spectroscopy. The performance of Pani-LGS/epoxy blends is discussed more generally, with tests revealing that on exposure to 0.6 M NaCl solution for 30 days, a 5 wt% Pani-LGS/epoxy coating resulted in low levels of corrosion. A mechanism for the postulated mode of corrosion protection is presented.  相似文献   
115.
In the present study, our main motivation was to investigate the structural and thermal stability of BN nanoparticles (B1.0N0.9-NPs) produced by spray-pyrolysis (SP) of borazine at 1400 °C by thermogravimetric experiments and X-ray diffraction. We observed that B1.0N0.9-NPs are relatively stable in air below 850 °C in which only oxidation of the NP surface proceeded. Above 850 °C, the powders started to strongly react with air due to bulk oxidation. Under nitrogen, they appeared to be less stable than plate-like BN synthesized from borazine at 1400 °C through conventional pyrolysis. This is related to the low degree of crystallization of B1.0N0.9-NPs that clearly affects their stability. Using a post-pyrolysis treatment at 1400 °C, B1.0N0.9-NPs remained stable up to 1600 °C similarly to plate-like BN. However, above 1600 °C, a relatively fast weight loss occurred for B1.0N0.9-NPs, whereas plate-like BN remained stable up to 1800 °C. This indicated that their lower size also affects their high temperature thermal behavior.  相似文献   
116.
This review discusses the genesis of impermeability in graphene and its extraordinary applications in fluid-encasement for wet electron-microscopy, selective gas-permeation, nanopore-bio-diffusion, and barrier coating against rusting and environmental hazards. As the thinnest material, graphene is composed of sp2 hybridized carbon atoms linked to one another in a 2D honeycomb lattice with high electron-density in its aromatic rings, which blocks-off all molecules. This phenomena, in combination with its strong structure (C–C bond energy = 4.9 eV and intrinsic strength = 43 N/m) makes graphene the most impermeable membrane (thinnest membrane that is impermeable). Apart from the applications mentioned above, graphene coatings have enabled fundamental studies on chemical processes and fluid structures. For example, graphene can allow electron imaging of nanocrystal nucleation process and water-lattice-structure due to its impermeability. Along with being the strongest, most conductive, and optically-absorbing material (∼2.3% optical absorbance), graphene’s impermeability opens a wide range of exciting opportunities.  相似文献   
117.
A bulk sample of nanocrystalline cubic diamond with crystallite sizes of 5–12 nm was synthesised from fullerene C60 at 20(1) GPa and 2000 °C using a multi-anvil apparatus. The new material is at least as hard as single crystal diamond. It was found that nanocrystalline diamond at high temperature and ambient pressure kinetically is more stable with respect to graphitisation than usual diamonds.  相似文献   
118.
Different formulations of microwave-exfoliated graphite oxide (MEGO) based thermoplastic polyurethane (TPU) nanocomposites were successfully prepared via melt blending followed by injection molding. The spectroscopic study indicated that a strong interfacial interaction had developed between the MEGO and the TPU matrix. The microscopic observations showed that the MEGO layers were homogeneously dispersed throughout the TPU matrix. Thermal analysis indicated that the glass transition temperatures (Tg) of the nanocomposites increased with increasing MEGO content and their thermal stability improved in comparison with pure TPU matrix. The mechanical properties of nanocomposites improved substantially by the incorporation of MEGO into the TPU matrix. Electrical conductivity test indicated that a conductivity of 10−4 S cm−1 was achieved in the nanocomposite containing only 4.0 wt.% of MEGO.  相似文献   
119.
The present work aims at evaluating the corrosion resistance of 316L stainless steel pre-treated with an organic–inorganic silane hybrid coating. The latter was prepared via a sol–gel process using 3-glycidoxypropyl-trimethoxysilane as a precursor and bisphenol A as a cross-linking agent. The corrosion resistance of the pre-treated substrates was evaluated by neutral salt spray tests, linear sweep voltammetry and electrochemical impedance spectroscopy techniques during immersion in a 3.5% NaCl solution. In addition, the effect of the drying method as an effective parameter on the microscopic features of the hybrid coatings was studied using Fourier transform infrared spectroscopy and scanning electron microscopy. Results show that the silane hybrid coatings provide a good coverage and an additional corrosion protection of the 316L substrate.  相似文献   
120.
Four series of Mo2FeB2 based cermets with different carbon contents were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX) and X-ray diffractometry (XRD). The transverse rupture strength (TRS), hardness (HRA) and fracture toughness (KIC) were also measured. The free carbon present in the green compact significantly decreased the grain size; however, a high carbon content resulted in the formation of graphite phase and Fe3C phase. An increasing carbon content promoted the dissolution of Mo in the binder phase. In addition, the binder phase varied from ferrite to martensite with increasing carbon content. The highest hardness was found for the cermets with 0.5 wt.% carbon addition, whereas the cermets without carbon addition exhibited the maximum TRS and fracture toughness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号