首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58274篇
  免费   3899篇
  国内免费   1598篇
电工技术   412篇
综合类   1480篇
化学工业   19219篇
金属工艺   7968篇
机械仪表   1013篇
建筑科学   725篇
矿业工程   616篇
能源动力   5425篇
轻工业   1187篇
水利工程   57篇
石油天然气   326篇
武器工业   150篇
无线电   4138篇
一般工业技术   16056篇
冶金工业   2767篇
原子能技术   396篇
自动化技术   1836篇
  2024年   152篇
  2023年   3189篇
  2022年   1876篇
  2021年   2263篇
  2020年   3245篇
  2019年   2610篇
  2018年   1924篇
  2017年   3017篇
  2016年   3041篇
  2015年   3081篇
  2014年   4108篇
  2013年   4056篇
  2012年   4130篇
  2011年   3906篇
  2010年   2725篇
  2009年   3358篇
  2008年   1487篇
  2007年   2814篇
  2006年   2423篇
  2005年   1204篇
  2004年   646篇
  2003年   813篇
  2002年   927篇
  2001年   880篇
  2000年   626篇
  1999年   719篇
  1998年   300篇
  1997年   156篇
  1996年   241篇
  1995年   277篇
  1994年   230篇
  1993年   181篇
  1992年   200篇
  1991年   212篇
  1990年   209篇
  1989年   191篇
  1988年   337篇
  1987年   674篇
  1986年   623篇
  1985年   207篇
  1984年   150篇
  1983年   82篇
  1982年   30篇
  1981年   22篇
  1980年   20篇
  1979年   22篇
  1978年   29篇
  1977年   21篇
  1976年   29篇
  1975年   22篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
62.
To make a Mn2+-doped red glass phosphor that can be excited with ultraviolet (UV) light of light-emitting diodes (LEDs), 60P2O5-35ZnO-5Al2O3-8MnO-xCu2O glasses (x = 0-1.00) were prepared by a melt-quenching method at 1200-1400°C for 30-180 minutes in atmospheric air, and the redox of Mn and Cu as well as fluorescence properties were investigated. The Mn2+ ion was not reduced and oxidized in the melting, quenching, and annealing processes. The valence of Cu in the glasses changed in the order of 0, 1+, and 2+ with the increase in the amount of Cu2O and in the melting temperature and time. In this study, a 60P2O5-35ZnO-5Al2O3-8MnO-0.10Cu2O glass melted at 1250°C for 90 minutes, having the highest Cu+ concentration, showed the strongest Mn2+ red fluorescence under the UV light at 275 nm. This strong Mn2+ red fluorescence has been caused by the energy transfer from excited Cu+ ions to Mn2+ ions.  相似文献   
63.
In this work, three dimensional (3D) NixCo1−xS2/graphene composite hydrogels with different Ni contents (denoted as NixCo1−xS2/GH (x = 0, 0.31, 0.56, 0.66, 1)) have been synthesized by a simple one-step hydrothermal method and utilized as the active materials of supercapacitors. The as-prepared samples present a 3D interconnected porous network with the pore sizes in the range of several to tens micrometers. Interestingly, the NixCo1−xS2 particles are uniformly located on the graphene network and the particle size is evolved from ∼50 nm to ∼1.5 μm with the increase of Ni content. The electrochemical measurements revealed that the specific capacitance, rate capability and cyclability of different NixCo1−xS2/GH electrodes are strongly affected by their different Ni content. Among these, the 3D Ni0.31Co0.69S2/GH composite has the highest specific capacitance of 1166 F/g at a current density of 1 A/g. Furthermore, a specific capacitance of 559 F/g can be still maintained at high current density of 20 A/g. After 1000 charge–discharge cycles at 5 A/g, the specific capacitance remains a high value of 755 F/g.  相似文献   
64.
《Ceramics International》2015,41(6):7478-7488
Gas sensing characteristics of one-electrode sensors based on the In2O3 ceramics doped by gallium and phosphorus have been discussed. In2O3-based ceramic was prepared by sol–gel technology. Ozone, CO, CH4 and H2 were used as tested gases. The doping concentration effect on the sensor parameters such as magnitude of response, operating temperature, response and recovery times, sensitivity to the air humidity, and selectivity have been analyzed. It was shown that In2O3 doping by Ga and P could be used for the sensor performance optimization. It was assumed that the appearance of the second phase (InPO4 and Ga2O3) and the change of structural parameters, taking place during doping process, were the main factors controlling the change of operating characteristics in In2O3:P and In2O3:Ga-based sensors.  相似文献   
65.
Nitrile rubber (NBR) blends with excellent performance have always been a hot research topic in petroleum field. Due to the excellent performance and compatibility of polyamide 6 (PA6), it provides an opportunity for the preparation of high-performance NBR/PA6 blends. In this article, NBR/PA6 blends were prepared by the three-step molding process. Experimentally, it was found that PA6 has a prominent reinforcement effect in NBR matrix. The variation of this mechanical property was investigated from different aspects of the crystal structure, crystallinities, phase morphology, and so on. It can be cleared that the formation of fibrous structure of PA6 phase is the main factor for reinforcement of the polymer blends. Meanwhile, the formation mechanism of the special phase structure induced by the three-step process is deeply expounded and its structural evolution schematic is established. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47472.  相似文献   
66.
Based on the potential therapeutic value in targeting mitochondria and the fluorophore tracing ability, a fluorescent mitochondria-targeted organic arsenical PDT-PAO-F16 was fabricated, which not only visualized the cellular distribution, but also exerted anti-cancer activity in vitro and in vivo via targeting pyruvate dehydrogenase complex (PDHC) and respiratory chain complexes in mitochondria. In details, PDT-PAO-F16 mainly accumulated into mitochondria within hours and suppressed the activity of PDHC resulting in the inhibition of ATP synthesis and thermogenesis disorder. Moreover, the suppression of respiratory chain complex I and IV accelerated the mitochondrial dysfunction leading to caspase family-dependent apoptosis. In vivo, the acute promyelocytic leukemia was greatly alleviated in the PDT-PAO-F16 treated group in APL mice model. Our results demonstrated the organic arsenical precursor with fluorescence imaging and target-anticancer efficacy is a promising anticancer drug.  相似文献   
67.
68.
The Er3+ doped oxyfluorogermanate glasses, with a composition containing Na element, were synthesized by the conventional melting–quenching technique. When Na element was introduced into the composition of oxyfluorogermanate glass, the crystals behavior was investigated in details. Depending on the annealing procedure supplied, thermal annealing of precursor glasses in the system GeO2/BaF2/AlF3/Na2O/NaF/ZnO/GdF3/ErF3 led to the precipitation of different crystal phase nanocrystals. It was confirmed the nanocrystals in GC600 is orthorhombic NaBaAlF6 which led to enhance obviously in the UC luminescence of Er3+. However, the nanocrystals in G585 led to decrease in the UC luminescence, which indicated few Er ions enter into the lattice of this nanocrystal phase. The reason of the decrease in UC emission intensity of GC585 was analyzed.  相似文献   
69.
Electrical resistivity, Seebeck coefficient, specific heat and thermal conductivity measurements on the Ti50−xNi50+x (x = 0.0–1.6 at.%) shape memory alloys are performed to investigate their thermal and transport properties. In this study, anomalous features are observed in both cooling and heating cycles in all measured physical properties of the slightly Ni-rich TiNi alloys (x ≤ 1.0), corresponds to the transformation between the B19′ martensite and B2 austenite phases. Besides, the transition temperature is found to decrease gradually with increasing Ni content, and the driving force for the transition is also found to diminish slowly with the addition of excess Ni, as revealed by specific heat measurements. While the signature of martensitic transformation vanishes for the Ni-rich TiNi alloys with x ≥ 1.3, the characteristics of strain glass transition start to appear. The Seebeck coefficients of these TiNi alloys were found to be positive, suggesting the hole-type carriers dominate the thermoelectric transport. From the high-temperature Seebeck coefficients, the estimated value of Fermi energy ranges from ∼1.5 eV (Ti48.4Ni51.6) to ∼2.1 eV (Ti50Ni50), indicating the metallic nature of these alloys. In addition, the thermal conductivity of the slightly Ni-rich TiNi alloys with x ≤ 1.0 shows a distinct anomalous feature at the B19′ → B2 transition, likely due to the variation in lattice thermal conductivity.  相似文献   
70.
《Ceramics International》2015,41(8):9373-9382
The aim of this work was to study the bioactivity of systems based on a clinically tested bioactive glass (BG) particulates (mol%: 4.33 Na2O−30.30 CaO−12.99 MgO−45.45 SiO2−2.60 P2O5−4.33 CaF2) and organic carriers. The cohesiveness of injectable bone graft products is of high relevance when filling complex volumetric bone defects. With this motivation behind, BG particulates with mean sizes within 11−14 μm were mixed in different proportions with glycerol (G) and polyethylene glycol (PEG) as organic carriers and the mixtures were fully injectable exhibiting Newtonian flow behaviors. The apatite forming ability was investigated using X-ray diffraction and field emission scanning electron microscopy under secondary electron mode after immersion of samples in simulated body fluid (SBF) for time durations varying between 12 h and 7 days. The results obtained revealed that in spite of the good adhesion of glycerol and PEG carriers to glass particles during preparation stage, they did not hinder the exposure of bioactive glass particulates to the direct contact with SBF solution. The results confirmed the excellent bioactivity in vitro for all compositions expressed by high biomineralization rates with the formation of crystalline hydroxyapatite being identified by XRD after 12 h of immersion in SBF solution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号