首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   209篇
  免费   0篇
  国内免费   1篇
电工技术   1篇
化学工业   86篇
金属工艺   11篇
机械仪表   1篇
建筑科学   3篇
矿业工程   1篇
能源动力   27篇
轻工业   3篇
无线电   17篇
一般工业技术   42篇
冶金工业   12篇
自动化技术   6篇
  2024年   1篇
  2023年   33篇
  2022年   18篇
  2021年   6篇
  2020年   16篇
  2019年   8篇
  2017年   18篇
  2016年   10篇
  2015年   6篇
  2014年   5篇
  2013年   7篇
  2012年   7篇
  2011年   1篇
  2010年   8篇
  2009年   2篇
  2008年   1篇
  2007年   10篇
  2006年   10篇
  2005年   6篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
  2000年   6篇
  1999年   2篇
  1998年   1篇
  1996年   2篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1987年   5篇
  1986年   3篇
  1985年   1篇
排序方式: 共有210条查询结果,搜索用时 15 毫秒
1.
The sluggish activity of cathode at intermediate-temperature limits commercialization of proton-conducting solid oxide fuel cells (H-SOFCs). In this investigation, a novel cathode of Ba0.95Ca0.05Fe0.85Sn0.05Y0.1O2.9−δF0.1 was successfully developed by co-doping of anion F and cations Ca, Sn, Y. We studied the effect of F-doping on phase structure, electrical conductivity and electrochemical properties of the cell. Compared with Ba0.95Ca0.05Fe0.85Sn0.05Y0.1O3−δ, F-doped Ba0.95Ca0.05Fe0.85Sn0.05Y0.1O3−δ exhibited higher conductivity. Composite cathode consisting of Ba0.95Ca0.05Fe0.85Sn0.05Y0.1O2.9−δF0.1 and Sm0.2Ce0.8O2−δ was applied in H-SOFCs with BaZr0.1Ce0.7Y0.2O3−δ electrolyte which achieves an encouraging performance with the maximum power density of 1050 mW cm−2 and polarization resistance of 0.04 Ω cm2 at 700 °C. The result of First-principles calculations based on spin-polarized Density Functional Theory shows that doping of F reduces the activation energy required for migration of oxygen ions. These results demonstrate that the anions and cations co-doped strategy can provide a new horizon for the cathode in H-SOFCs.  相似文献   
2.
《Ceramics International》2016,42(15):16852-16860
Green light emitting Zn2SiO4:Mn2+ phosphors have been synthetised by the solid-state reaction in ambient atmosphere at 1300 °C for 2 h, with ZnO, SiO2 and MnO2 as the reagents. The ZnO/SiO2 molar ratio varied from 2 to 0.5. The doping level was in a lower concentration range (0.01≤x≤0.05). The effect of both the Mn2+ concentration and ZnO/SiO2 molar ratio on luminescence intensity and decay was investigated in detail. The microstructure and phase composition of prepared phosphors were characterised by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). XRD results indicate that the pure α-Zn2SiO4 phase with rhombohedral structure was obtained after heat treatment. The prepared phosphors exhibit a strong green emission centred at 525 nm from the 4T16A1 forbidden transition. The highest emission intensity was observed for phosphors with ZnO/SiO2 molar ratio equal to 1.0, and the Mn2+ concentration x=0.03 (ZSMn3). The emission intensity of the ZSMn3 phosphor is comparable with the commercial Zn2SiO4:Mn2+ phosphor. The decay curves can be characterised by double exponential function. After fitting a fast component τ1∼2 ms and a slow component τ2∼10 ms were obtained. The decay times decrease significantly with increasing Mn2+ concentration. The decay time and luminescence mechanism depend on the excitation light wavelength. Temperature dependent luminescence of the ZSMn3 phosphor in the temperature range of 25–200 °C was studied.  相似文献   
3.
In this paper an easy method to prepare flexible conductive substrates has been demonstrated. The substrates are mainly PET (PolyEthyleneTerephthalate), on which AgNW (silver nanowire) were deposited by spin casting method. For adhesion purpose a common cosmetic material has been utilized. The material provides versatile features to these coated substrates, including robustness, hydrophobicity with transparent bracing of nanowires (NW) with the flexible substrate. Four probe conductivity measurement shows the resistivity is 12 Ω/cm and is comparable to that of commercially available indium tin oxide (ITO) coated substrates. This method is cheap, easy and can be used for different objectives like flexible thin film photovoltaic, light emitting diodes, photosensors etc.  相似文献   
4.
《Ceramics International》2016,42(6):6891-6898
A series of single-phase white-light-emitting phosphors, Eu2+-activated Ba3GdNa(PO4)3F phosphors were synthesized by solid-state reactions. The crystal structure of Ba3GdNa(PO4)3F was been identified by Rietveld refinement of X-ray diffraction pattern. The Eu2+-activated Ba3GdNa(PO4)3F phosphors exhibit broad excitation spectra from 250 to 420 nm, which matched well with the n-UV LED chips. Under the excitation of 365 nm, the emission spectrum almost covered the entire visible region including two emission bands peaked at 472 nm and 640 nm. Three different Eu2+ emission centers in Ba3GdNa(PO4)3F:Eu2+ phosphor were confirmed by their fluorescence decay lifetimes. The optimal concentration of Eu2+ in Ba3GdNa(PO4)3F:xEu2+ was 3 mol% and the corresponding concentration quenching mechanism was verified to be exchange coupling interaction. Furthermore, the white light-emitting diode fabricated with Ba3GdNa(PO4)3F:0.05Eu2+ phosphor and a 370 nm UV chip has a CIE of (0.3267, 0.2976) with a color-rendering index of 78.4 at the CCT of 5287 K.  相似文献   
5.
Platinum thin films are deposited on anodic aluminium oxide (AAO) templates by atomic layer deposition (ALD). The highly ordered island-like platinum nanostructures formed on the AAO template produce a high Raman scattering signal because of the periodical hexagonal arrangement. As an illustration, dramatic enhancement is achieved using Rhodamine 6G (R6G) as a molecular probe.Field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) show that the gap between the island-like structures is below 10 nm. Owing to activation by the incident laser beam, the localized electromagnetic field on the platinum island surface can be dramatically enhanced by the sub-10 nm regime subsequently amplifying the Raman signal. Finite-difference time-domain (FDTD) calculation matches the experimental phenomena suggesting that the excellent surface-enhanced Raman scattering (SERS) characteristics of the platinum structure arise from the high density and abundance of hot spots. Because the platinum film is inert in air, the SERS enhancing substrate can be used reliably in many trace chemical and biological detection applications.  相似文献   
6.
《Ceramics International》2016,42(5):6168-6177
C-axis textured SiC ceramics were prepared by a strong magnetic field of 6 T assisted gel-casting and subsequent pressureless sintering. The optimal suspension parameters for gel-casting were determined by analyzing the influences of pH value and dispersant content on the stability and dispersibility of suspensions. The effect of sintering conditions on the texture development and properties of SiC ceramics was discussed. It was found that the increasing sintering temperature or holding time promoted the densification process of SiC ceramics. The c-axis of SiC grain was aligned parallel to the magnetic field by applying a strong magnetic field of 6 T. The degree of texture of SiC ceramics showed a slightly increasing trend with the increase of sintering temperature or holding time. When the samples were sintered at 1950 °C for 4 h or 6 h, the large elongated grains were formed in the samples, leading to the extremely evident anisotropic microstructure on different planes. Textured SiC ceramics exhibited the anisotropic bending strength.  相似文献   
7.
《Ceramics International》2016,42(4):4642-4647
Tunable up-conversion luminescent material KY(MoO4)2: Yb3+, Ln3+ (Ln=Er, Tm, Ho) has been synthesized by a typical hydrothermal process. Under 980 nm laser diode (LD) excitation, the emission intensity and the corresponding luminescence colors of KY(MoO4)2: Yb3+, Ln3+ (Ln=Er, Tm, Ho) have been investigated in detail. The energy transfer from the Yb3+ sensitizer to Ho3+, Er3+ and Tm3+ activators plays an important role in the development of color-tunable single- phased phosphors. The emission intensity keep balance through control of the Ho3+ co-doping concentrations, white light was experimentally shown at KY(MoO4)2: 20 mol% Yb3+, 0.8 mol% Er3+, 0.5 mol% Tm3+, 1.0 mol% Ho3+ phosphor with further calcination at 800 °C for 4 h under 980 nm laser excitation. The color tunability, high quality of white light and high intensity of the emitted signal make these up-conversion (UC) phosphors excellent candidates for applications in solid-state lighting.  相似文献   
8.
《Ceramics International》2020,46(12):19752-19757
In this study, plate-like Na0.5Bi0.5TiO3 (BNT) templates with perovskite structure were obtained by two-step molten salt synthesis (MSS) method at a low temperature. Firstly, Bi4Ti3O12 precursors were synthesized at 1030 °C in NaCl–KCl molten salt. Secondly, plate-like Na0.5Bi0.5TiO3 particles with perovskite structure were obtained from plate-like layer-structured ferroelectric ceramic of Bi4Ti3O12 by topochemical microcrystal conversion method. Result showed that excessive Na2CO3 was beneficial to facilitate the low temperature synthesis. In the case of an excess of 30 mol% Na2CO3, plate-like BNT particles could be obtained by synthesis at temperatures ranging from 760 °C to 800 °C, which indicated a flexible processing route. Also, it has been observed that plate-like BNT particles show a high aspect ratio with 1 μm in thickness and 10–20 μm in length. These Na0.5Bi0.5TiO3 plate-like particles can be good candidates for the preparation of lead-free BNT-based piezoelectric ceramics with oriented grain microstructure.  相似文献   
9.
《Organic Electronics》2007,8(5):552-558
We report on the fabrication and characterization of dual-gate pentacene organic thin-film transistors (OTFTs) with plasma-enhanced atomic-layer-deposited (PEALD) 150 nm thick Al2O3 as a bottom-gate dielectric and PEALD 200 nm thick Al2O3 as a top-gate dielectric. The Vth of dual-gate OTFT has changed systematically with the application of voltage bias to top-gate electrode. When voltage bias from −10 V to 10 V is applied to top gate, Vth changes from 1.95 V to −9.8 V. Two novel types of the zero drive load logic inverter with dual-gate structure have been proposed and fabricated using PEALD Al2O3 gate dielectrics. Because the variation of Vth due to chemical degradation and the spatial variation of Vth are inherent in OTFTs, the compensation technology by dual-gate structure can be essential to OTFT applications.  相似文献   
10.
AlSBA-15 in the powder form with different nSi/nAl ratios (45, 136 and 215) were synthesized by hydrothermal technique. The powdered materials were made into cylindrical extrudates with the addition of bentonite as a binder. The AlSBA-15 materials were characterized by XRD, N2 adsorption, AAS and thermogravimetric analysis. The orderly growth of AlSBA-15 is evidenced by its XRD. The surface area of the powder catalyst is around 950 m2/g and that of extrudate is close to 600 m2/g. Vapor phase alkylation of phenol with tert-butanol was carried out over the extrudates of AlSBA-15 as a model reaction. The activity of AlSBA-15 extrudates follows the order: AlSBA-15 Si/Al = 45 > AlSBA-15 Si/Al = 136 > AlSBA-15 Si/Al = 215. The reaction products were found to be 2-TBP, 4-TBP and 2,4-DTBP. The selectivity to para tertiary butylation is higher than other reactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号