首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   211篇
  免费   0篇
  国内免费   1篇
电工技术   1篇
化学工业   87篇
金属工艺   11篇
机械仪表   2篇
建筑科学   3篇
矿业工程   1篇
能源动力   27篇
轻工业   3篇
无线电   17篇
一般工业技术   42篇
冶金工业   12篇
自动化技术   6篇
  2024年   1篇
  2023年   33篇
  2022年   18篇
  2021年   6篇
  2020年   16篇
  2019年   8篇
  2017年   18篇
  2016年   10篇
  2015年   6篇
  2014年   5篇
  2013年   7篇
  2012年   7篇
  2011年   1篇
  2010年   8篇
  2009年   2篇
  2008年   1篇
  2007年   10篇
  2006年   10篇
  2005年   6篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
  2000年   6篇
  1999年   2篇
  1998年   1篇
  1996年   2篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1987年   5篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有212条查询结果,搜索用时 15 毫秒
21.
A fabrication procedure of thermally stable mesoporous SnO2 and TiO2 powders has been overviewed along with their gas-sensing properties. Treatment of an as-prepared composite material of a supramolecule surfactant and SnO2, i.e. a self-assembly of the surfactant fringed with a SnO2 thin wall, with phosphoric acid enabled us to fabricate thermally stable ordered mesoporous SnO2 powder having a d100 value of 3.2 nm, a crystallite size of 2.0 nm and a large specific surface area of 305 m2 g−1 even after calcination at 600 °C for 5 h. A thick film sensor fabricated with the ordered mesoporous SnO2 powder exhibited higher sensing performance than that fabricated with SnO2 powder prepared by a conventional method and therefore having a lower specific surface area. Surface modification of the conventional SnO2 powder with a mesoporous SnO2 layer was also found to be effective for improving the sensing properties. Mesoporous TiO2 powder could be prepared by employing a modified sol-gel method with Ti(NO3)4 and polyethylene glycol having different molecular weights. Higher sensitivity was achieved with a disc-type sensor fabricated with mesoporous TiO2 powder, in comparison with one fabricated with commercially available TiO2 powder in the same form, but its sensing properties needed to be further modified.  相似文献   
22.
Halide perovskite glass-ceramic has recently moved into the center of the attention of perovskite research due to their potential for temperature sensing. However, quantum dots glass-ceramic with excellent luminescence performance still needs to be combined with rare-earth (RE) ions to accurately measure temperature. In this work, a novel non-RE doped dual-emission (460 nm and 512 nm) CsPbBr3 quantum dots was obtained in telluride glass via the friction crystallization method, where 512 nm was derived from intrinsic luminescence of quantum dots, and 460 nm was originated from thermally induced bromine vacancy, which can be used for temperature sensing. Fluorescence intensity ratio results indicate that the relative sensitivity of dual-emission could reach 5.6 % K?1 at 323 K. The discovery of non-RE doped CsPbBr3 QDs glass-ceramic with negative thermal quenching uncovers a new optional sensing glass material that surpass traditional RE-doped QDs glass by their tunability and sensitivity.  相似文献   
23.
《Ceramics International》2017,43(15):12232-12238
Neodymium-boro-germanate glasses and glass ceramics (with Nd2O3 contents up to 40 mol%) embedded with silver metallic nanoparticles (AgNPs) were prepared by the melt-quenching technique. Two series of samples (with AgNPs and without AgNPs) were investigated by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, diffuse reflectance ultraviolet–visible (DR-UV–vis) spectroscopy and photoluminescence (PL) spectroscopy. XRD data reveal that for both series the samples with x < 40 mol% Nd2O3 are basically amorphous containing only small amounts of a crystalline phase (identified as crystalline B2O3) while for samples x = 40 mol% Nd2O3 an important amount of a crystalline phase (identified as the NdBO3 orthorhombic phase) is present. FT-IR spectroscopy data show that addition of controlled amounts of Nd2O3 and AgNPs changes the structural units that build up the host glass ceramic network. These changes were confirmed also by the photoluminescence spectra that show that addition of AgNPs to the host matrix produces changes at the level of emission peaks. The positive values of bonding parameter (δ) calculated based on DR-UV–vis data indicate a covalent character of the bonds from the studied samples.  相似文献   
24.
《Ceramics International》2017,43(17):15010-15017
During the last decade, fabrication of high-quality graphene films by chemical vapor deposition (CVD) for nanoelectronics and optoelectronic applications has attracted increasing attention. However, processing of large-area monolayer and defect-free graphene films is still challenging. In this work, we have studied the effect of processing conditions on the self-limited growth of graphene monolayers on copper foils during low pressure CVD both experimentally and theoretically based on thermokinetics and kinetics of Langmuir adsorption. The effect of copper pre-treatment, growth time, and carbon potential of the atmosphere (indicated by the methane-to-hydrogen gas ratio, r) on the quality of graphene nanosheets (number of layers, surface roughness and the lateral size) were studied. Microscopic studies show that careful pre-treatment of the copper foil by electropolishing provides a suitable condition for the self-limited growth of graphene with minimum surface roughness and defects. Raman spectroscopy and atomic force microscopy determine that the number of graphene sheets decreases with increasing the carbon potential while smother surfaces are attained. Large-area monolayer graphene films are obtained at relatively high carbon potential (r=1) and controlled growth time (10 min) at 1000 °C. Measurement of the electrical response of the prepared monolayer graphene films on SiO2 (300 nm)/Si substrates in a field effect transistor (FET) device shows a high mobility of 2780 cm2 V−1 s−1. Interestingly, the device exhibits p-type semiconducting behavior with the Dirac point at a gate voltage of 25 V. The finding show a great promise for graphene-based FET devices for future nanoelectronics.  相似文献   
25.
26.
27.
28.
《Water research》1996,30(10):2530-2534
Monoethylamine (MEA) degradation via nitrate respiration was evaluated in batch experiments using suspended growth bacterial cultures grown under low growth rate conditions. It was found that, under the conditions tested, MEA was highly degradable when the initial TOC/MLVSS ratio used in a batch experiment was < 0.35, beyond which, however, MEA inhibition was evident. The composition of the medium solution used to cultivate the bacterial cultures was critical in MEA degradation via nitrate respiration. In this study, the best MEA degradation was attained when cobalt (0.45 mg/l), copper (0.5 mg/l), molybdenum (0.5 mg/l), and yeast extract (1.0 mg/l) were all present in the medium solution. Ammonia was formed as an end product from MEA degradation via nitrate respiration. The MEA-N initially added in a batch experiment could be accounted for as NH+4-N when the assimilatory requirements for nitrogen were negligible during the sampling period.  相似文献   
29.
High quality NaYF4:Eu3+ luminescent materials were successfully synthesized via a facile template technique by hydrothermal method. The samples were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and fluorescence spectroscopy (FS). The incorporating of Eu3+ ions into NaYF4 crystal lattice influenced the symmetry types of NaYF4 crystals, resulting in phase transformation of NaYF4 crystals between α and β phase. The pure hexagonal phase of branched NaYF4: Eu3+ was obtained as the Eu3+ concentration reached 15 mol.%. In addition, the luminescence color was tuned by changing the doping concentration of Eu3+ ions.  相似文献   
30.
Mg-x(Ti0.9 Zr0.2 Mn1.5 Cr0.3)(x=20%, 30%, 40%) (mass fraction) composite powders were prepared by reactive ball milling with hydrogen and their hydrogen storage properties and microstructure were investigated by XRD, SEM and pressure-composition-temperature measurement. The results show that the composites have 3.83%-5.07% hydrogen capacity at 553 K and good hydrogenation kinetics, even at room temperature. Among them, the milled Mg-30%(Ti0.9Zr0.2Mn1.5Cr0.3) composite has the highest hydrogenation kinetics as it can quickly absorb 2.1% hydrogen at 373 K, 3.5% in 2 000 s at 473 K, even 3.26% in 60 s at 553 K under 3 MPa hydrogen pressure. The improved hydrogenation properties come from the catalytic effect of Ti0.9 Zr0.2 Mn1.5 Cr0.3 particles dispersed uniformly on the surface of Mg particles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号