首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1690篇
  免费   41篇
  国内免费   50篇
电工技术   5篇
综合类   14篇
化学工业   578篇
金属工艺   220篇
机械仪表   299篇
建筑科学   2篇
矿业工程   6篇
能源动力   118篇
轻工业   63篇
石油天然气   30篇
武器工业   2篇
无线电   36篇
一般工业技术   343篇
冶金工业   19篇
原子能技术   17篇
自动化技术   29篇
  2024年   6篇
  2023年   62篇
  2022年   55篇
  2021年   47篇
  2020年   70篇
  2019年   78篇
  2018年   30篇
  2017年   47篇
  2016年   47篇
  2015年   70篇
  2014年   89篇
  2013年   127篇
  2012年   126篇
  2011年   136篇
  2010年   114篇
  2009年   99篇
  2008年   70篇
  2007年   124篇
  2006年   89篇
  2005年   55篇
  2004年   34篇
  2003年   23篇
  2002年   31篇
  2001年   21篇
  2000年   12篇
  1999年   39篇
  1998年   8篇
  1997年   6篇
  1996年   6篇
  1995年   6篇
  1994年   5篇
  1993年   3篇
  1992年   4篇
  1991年   1篇
  1989年   2篇
  1988年   3篇
  1987年   16篇
  1986年   18篇
  1985年   1篇
  1976年   1篇
排序方式: 共有1781条查询结果,搜索用时 15 毫秒
111.
The fabric/phenolic composites with the pure and silanized hybrid glass/PTFE fabric were prepared by dip-coating of the hybrid glass/PTFE fabrics in a phenolic resin. The friction and wear performances of the resulting fabric composites were evaluated using pin-on-disc wear tester. The composition change of the glass fabric in hybrid glass/PTFE fabric after silanization was analyzed by FTIR spectroscopy. The morphologies of the composite structures and the worn surfaces of the composites were analyzed by means of scanning electron microscopy (SEM). The results show that the fabric/phenolic composite with the β-aminoethyltrimethoxylsilane silanized hybrid glass/PTFE fabric can obtain the highest load-carrying capacity and the best wear-resistance, followed by the composite with γ-glycidoxypropyltrimethoxysilane silanized hybrid glass/PTFE fabric. Chemical reactions have achieved as the hybrid glass/PTFE fabric was silanized with β-aminoethyltrimethoxyl silane or γ-glycidoxypropyltrimethoxy silane, which contribute to strengthen the bonding strength between the fabric and the adhesive and hence to improve the tribological properties of the hybrid glass/PTFE fabric composites.  相似文献   
112.
Diamond-like carbon (DLC) films with different structures were deposited on Si (100) and stainless steel substrates in a hybrid deposition system with Ar and CH4 as the feedstocks. The effects of the bias voltage, Ti-interlayer, Ti functional gradient layer and Ti-doping on the internal stress in DLC films were investigated. The results show that the internal stress in DLC films arises from both the intrinsic stress generated during the film growth and the thermal stress generated due to the mismatching of the thermal expansion coefficient between the DLC films and the substrate materials. The intrinsic stress can be released through doping titanium element at the expense of reducing the sp3/sp2 ratio. The thermal stress in DLC films can be decreased through introducing Ti-interlayer or Ti functional gradient layer. Noticeably, DLC films with very low internal stress deposited on stainless steel can be obtained through the combination of Ti-doping and Ti functional gradient layer.  相似文献   
113.
《Materials Research Bulletin》2013,48(11):4718-4722
A reliable and facile pathway is described here for preparing high-quality bismuth nanoparticles. Combined with hydrothermal method and confined growing effect of polymer, bismuth nanoparticles with uniform size and shape were obtained with remarkable productivity. The nanoparticles is proved to be pure Rhombohedral structure Bi crystals with R-3m space group and the diameter of the nanoparticles is about 80 nm with a quite narrow particle size distribution. Those bismuth nanoparticles were predicted to grow from a rolling process by sheet-like Bi nanocrystal intermediates. The obtained bismuth nanoparticles were used to prepare modified electrode for the detection of Cd2+ and Pb2+ in water solution by stripping analysis. Compared with naked glassy carbon electrodes, the modified electrode showed two obvious responses at −0.85 V and −0.62 V, corresponding to the reduction process of Pb2+ and Cd2+ and this well-resolved stripping response can be observed when the concentration is as low as 10 μg/L, indicating potential application in electroanalysis for environmental inspection.  相似文献   
114.
《Tribology International》2012,45(12):1736-1741
The influence of thermal activation temperature on the tribological properties of surface-coated serpentine ultrafine powders as liquid paraffin additives was studied. It is found that the serpentine powders suspended in liquid paraffin present excellent tribological properties. Thermal activations in a temperature range from 300 to 600 °C increase the film forming ability and tribofilm completeness of the serpentine, keep the layer structure and accordingly further improve the tribological properties. However, the layer structure is destroyed and hard phases appear after thermal activated at or higher than 850 °C, as results in the aggravation of friction and wear.  相似文献   
115.
A new electrodischarge method for obtaining of nanocarbon materials by treatment of organic liquids is proposed. Efficient modes of electrodischarge techniques for obtaining of new promising carbon powders comprising diamond-like nanoparticles, nanotubes, and nanofibers are determined. The tribological properties of these powders are studied. It is shown that the application of nanocarbon powders in the contact area of the surface friction makes it possible to reduce the wear and to enhance the operation factors.  相似文献   
116.
In this work, native silicon nitride (Si3N4) nanoparticles were modified by macromolecular coupling agent (LMPB-g-MAH) which was designed and synthesized according to the chain structure of styrene butadiene rubber (SBR), and Si3N4/SBR nanocomposites were prepared by two-segment mixing process. The structure and surface properties of modified Si3N4 nanoparticles were characterized by Transmission Electron Microscope (TEM), Fourier Transform Infrared Spectroscopy (FTIR), size distribution analyzer, and contact angle measuring instrument. The effect of different dosage of nano-Si3N4 on Si3N4/SBR nanocomposites was also systematically studied. It can be got that LMPB-g-MAH can effectively inhibit the agglomeration and improve the hydrophobic property of Si3N4 nanoparticles. It also can be found that modified Si3N4 nanoparticles brings well physical and dynamic mechanical properties, aging resistance, oil resistance, wear resistance, and low rolling resistance to SBR, especially, when the dosage is 0.5–1.5 phr, the best overall performance of Si3N4/SBR nanocomposites can be achieved.  相似文献   
117.
118.
Cr-incorporated diamond-like carbon (Cr-DLC) films were deposited on AZ31 magnesium alloy as protective coatings by a hybrid beams deposition system, which consists of a DC magnetron sputtering of Cr target (99.99%) and a linear ion source (LIS) supplied with CH4 precursor gas. The Cr concentration (from 2.34 to 31.5 at.%) in the films was controlled by varying the flow ratio of Ar/CH4. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to investigate the microstructure and composition of Cr-DLC films systematically. An electrochemical system and a ball-on-disk tribotester were applied to test the corrosion and tribological properties of the film on the AZ31 substrate, respectively. At low Cr doping (2.34 at.%), the film mainly exhibited the feature of amorphous carbon, while at high doping (31.5 at.%), chromium carbide crystalline phase occurred in the amorphous carbon matrix of the film. In this study, all the prepared Cr-DLC films showed higher adhesion to AZ31 than the DLC film. Especially for the film with low Cr doping (2.34 at.%), it owned the lowest internal stress and the highest adhesion to substrate among all the films. Furthermore, this film could also improve the wear resistance of magnesium alloy effectively. But, none of the films could improve the corrosion resistance of the magnesium alloy in 3.5 wt.% NaCl solution due to the existence of through-thickness defects in the films.  相似文献   
119.
In this work, carbonaceous materials and their combinations with each other were used as counter electrodes for efficient dye-sensitized solar cells (DSSCs). A small amount of TiO2 paste was also incorporated in each electrocatalyst to increase the adhesion between the carbon material and the conductive glass substrate. The dispersion of carbonaceous materials in composite films was characterized by transmission electron microscopy (TEM). Electrocatalytic characteristics of carbon/carbon catalysts are systematically investigated by electrochemical techniques, such as cyclic voltammetry and chronoamperometry. Solar cells assembled with carbon/carbon composite counter electrodes were characterized by photocurrent–voltage characteristic and electrochemical impedance spectroscopy measurements. The results indicate that under optimal conditions, the solar cell assembled with carbon/carbon composite counter electrode containing activated carbon, multi-walled carbon nanotube and graphene, shows power conversion efficiency of 10.73%. This photovoltaic performance is comparable with 11.20% for the platinum-based dye-sensitized solar cell. The results exhibit that carbonaceous material is an encouraging alternative for low-cost DSSCs.  相似文献   
120.
A series of new diamide ligands were introduced into the complexes of Eu(NO3)3 and Tb(NO3)3 so as to improve the fluorescent properties. The fluorescent properties of the resulting complexes were investigated. It was found that the complexes subject to the excitation of UV light showed characteristic emission of europium and terbium ions, in particular, the Tb complexes had very much intense fluorescence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号