首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65751篇
  免费   7630篇
  国内免费   3827篇
电工技术   3059篇
技术理论   1篇
综合类   3798篇
化学工业   12305篇
金属工艺   6793篇
机械仪表   2589篇
建筑科学   3338篇
矿业工程   2591篇
能源动力   4248篇
轻工业   7816篇
水利工程   484篇
石油天然气   628篇
武器工业   76篇
无线电   4736篇
一般工业技术   8583篇
冶金工业   2699篇
原子能技术   571篇
自动化技术   12893篇
  2024年   239篇
  2023年   2053篇
  2022年   2192篇
  2021年   2596篇
  2020年   3017篇
  2019年   2475篇
  2018年   2220篇
  2017年   3090篇
  2016年   3218篇
  2015年   3073篇
  2014年   4255篇
  2013年   4713篇
  2012年   6198篇
  2011年   6180篇
  2010年   4880篇
  2009年   5196篇
  2008年   2967篇
  2007年   4793篇
  2006年   4090篇
  2005年   1766篇
  2004年   861篇
  2003年   802篇
  2002年   920篇
  2001年   811篇
  2000年   663篇
  1999年   728篇
  1998年   431篇
  1997年   260篇
  1996年   342篇
  1995年   244篇
  1994年   224篇
  1993年   151篇
  1992年   141篇
  1991年   151篇
  1990年   145篇
  1989年   137篇
  1988年   229篇
  1987年   482篇
  1986年   229篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   4篇
  1981年   3篇
  1980年   8篇
  1979年   8篇
  1976年   4篇
  1959年   6篇
  1951年   8篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
121.
122.
It is the aim of this paper to examine the effects of conditioning time on the flotation of hematite using three technical grade fatty acid reagents as providing additional evidence on their mechanism of interaction with the hematite surface. Various mechanisms have been postulated as occurring as conditioning time is increased. Both physical (e.g. conditioning time and power input) and chemical (nature, dispersion and solubility of the adsorbing species) contribute to the mechanisms of attachment of collector. In this paper, the mechanism of attachment of oleate to hematite can be readily explained by chemisorption, but the mechanism of attachment of lauric acid appears to be physical adsorption at neutral pH. The flotation of hematite with a mixture of tallow-type fatty acids (palmitic, stearic and oleic acids) is very sensitive to conditioning time, and suggests that, even though flotation is very effective at short conditioning times, it is very susceptible to the presence of fines and their associated high surface areas. It is therefore obvious that both the physical and chemical conditions contribute to the mechanisms of adsorption of fatty acids on iron-containing oxide minerals and must be understood in order to optimise the flotation of these minerals in an industrial situation.  相似文献   
123.
Aiming to environment protection, green solvents are crucial for commercialization of solution-processed optoelectronic devices. In this work, d-limonene, a natural product, was introduced as the non-aromatic and non-chlorinated solvent for processing of polymer light-emitting diodes (PLEDs) and organic field effect transistors (OFETs). It was found that d-limonene could be a good solvent for a blue-emitting polyfluorene-based random copolymer for PLEDs and an alternating copolymer FBT-Th4(1,4) with high hole mobility (μh) for OFETs. In comparisons to routine solvent-casted films of the two conjugated polymers, the resulting d-limonene-deposited films could show comparable film qualities, based on UV–vis absorption spectra and observations by atomic force microscopy (AFM). With d-limonene as the processing solvent, efficient blue PLEDs with CIE coordinates of (0.16, 0.16), maximum external quantum efficiency of 3.57%, and luminous efficiency of 3.66 cd/A, and OFETs with outstanding μh of 1.06 cm2 (V s)−1 were demonstrated. Our results suggest that d-limonene would be a promising non-aromatic and non-chlorinated solvent for solution processing of conjugated polymers and molecules for optoelectronic device applications.  相似文献   
124.
Chen  Xin  Zhao  Bijun  Li  Shuti 《Semiconductors》2019,53(13):1792-1796
Semiconductors - The performance of InGaN/GaN multiple quantum well (MQW) solar cells with five different Si-doping concentrations, namely 0, 4 × 1017 cm–3, 1 × 1018 cm–3, 3...  相似文献   
125.
《能源学会志》2020,93(4):1449-1459
Oil shortage and awareness of environment pollution leads to the extensive use of biodegradable starch-based materials against synthetic plastics. The accumulated wastes of these plastics takes more time for natural recycling and the process is complex. Therefore the best option of recycling would be to convert these polymers into a source of energy by pyrolysis. So to understand the pyrolytic behaviour, kinetics of such waste plastics is studied by using thermogravimetric analysis at different heating rates of 10 °C, 20 °C, 40 °C, 60 °C, 80 °C and 100 °C in nitrogen atmosphere followed by characterization of the pyrolysis products. The kinetic parameters are obtained for two major stages of decomposition in two different temperature ranges 250–620 °C and 620–855 °C by iso-conversional methods such as Friedman, Coats-Redfern, FWO and Kissinger methods. The regression coefficient data (>0.9) of kinetic plots obtained for different methods best fits to the kinetic equation. Empirical formula of the compound is determined by ultimate analysis is CH2.214S0.0018O0.6910. Proximate analysis gives the idea of volatile component which is74.33%. The range of average value of activation energy is 120.7013 kJ/mol to 140.7707 kJ/mol for the biodegradable plastic plate with different conversion (0.1–0.6) and (0.1–0.3) respectively at two different temperatures. The pyrolysis products obtained using a semi-batch reactor are characterized to know their composition and other properties.  相似文献   
126.
Wan  Huan  Wang  Hui  Scotney  Bryan  Liu  Jun  Ng  Wing W. Y. 《Multimedia Tools and Applications》2020,79(39-40):29327-29352
Multimedia Tools and Applications - In many real-world classification problems there exist multiple subclasses (or clusters) within a class; in other words, the underlying data distribution is...  相似文献   
127.
《能源学会志》2020,93(6):2381-2387
To enhance the activity of catalysts for CO removal, the perovskite-type catalysts La1-xSrxCoO3 (x = 0, 0.2, 0.4, 0.6, and 0.8) with different Sr2+ doping amount were synthesized by flame spray synthesis (FSS) method. The perovskite-type catalyst synthesized by FSS has a much larger specific surface area (SSA) than that prepared by other conventional methods. The SSA of catalyst increases with the increase of Sr2+ doping amount and the SSA of La0.2Sr0.8CoO3 reaches 31.65 m2/g. Compared with other conventional methods, FSS method significantly improves the activity of catalyst and makes it close to the performances of catalysts with surface modification. The substitution of La3+ by Sr2+ promotes the generation of secondary phase Co3O4 and SrCO3. The catalytic activity of La1-xSrxCoO3 increases with the addition of Sr2+, which results from the increasing active sites and oxygen vacancies. Interestingly, La0.4Sr0.6CoO3 performs the highest activity for CO oxidation and the CO conversion reaches 50% at 148.6 °C and 90% at 165.9 °C. The oxidation of CO over La1-xSrxCoO3 catalyst may follow a combination of MvK and L-H mechanisms according to the experimental results of H2-TPR. Moreover, the catalyst exhibits good catalytic activity in consecutive oxidation cycles. In consecutive oxidation experiments with La0.4Sr0.6CoO3, the CO conversion reaches 50% at 168.8 °C and 90% at 197.8 °C in the eighth oxidation cycle. These results prove that FSS method can further improve the activity of catalysts and is suitable for the preparation of efficient catalysts.  相似文献   
128.
129.
This paper discusses the effects of the grinding-induced cyclic heating on the properties of the hardened layer in a plunge cylindrical grinding process on the high strength steel EN26. It was found that a multi-pass grinding brings about a uniform and continuous hardened layer along the circumference of the cylindrical workpiece. An increase of the number of grinding passes, leads to a thicker layer of hardening, a larger compressive residual stress and a deeper plastic deformation zone. Within the plastic deformation zone, the martensitic grains are refined by the thermo-mechanical loading, giving rise to a hardness of 12.5% higher than that from a conventional martensitic transformation. The coupled effects of heat accumulation and wheel wear in the multi-pass grinding are the main causes for the thickening of the hardened layer. A too small infeed per workpiece revolution would result in insufficient grinding heat, and in turn, bring about an undesirable tempered hardened layer and a reduction of its hardness.  相似文献   
130.
Titanium(Ti) and its alloys are used extensively in orthopedic implants because of their excellent biocompatibility,mechanical properties and corrosion resistance. However,titanium-based implant materials face many severe complications,such as implant loosening due to poor osseointegration and bacterial infections,which may lead to implant failure. Hence,preparing a biomaterial surface,which enhances the interactions with host cells and inhibits bacterial adhesion,may be an optimal strategy to reduce the incidence of implant failure. This study aims to improve osseointegration and confer antibacterial properties on Ti through a combination of two surface modifications including nanostructuring generated by acid etching and ultraviolet(UV) light treatment.Our results showed that without UV treatment,the acid etching treatment of Ti surface was effective at both improving the adhesion of bone mesenchymal stem cells(BMSCs) and increasing bacterial adhesion. A further UV treatment of the acid-etched surface however,not only significantly improved the cell adhesion but also inhibited bacterial adhesion. The acid-etched nanostructured titanium with UV treatment also showed a significant enhancement on cell proliferation,alkaline phosphatase(ALP) activity and mineralization. These results suggest that such nanostructured materials with UV treatment can be expected to have a good potential in orthopedic applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号