首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1467篇
  免费   74篇
  国内免费   109篇
电工技术   11篇
综合类   74篇
化学工业   271篇
金属工艺   140篇
机械仪表   30篇
建筑科学   17篇
矿业工程   16篇
能源动力   137篇
轻工业   223篇
水利工程   6篇
石油天然气   8篇
武器工业   3篇
无线电   57篇
一般工业技术   201篇
冶金工业   51篇
原子能技术   7篇
自动化技术   398篇
  2024年   6篇
  2023年   102篇
  2022年   51篇
  2021年   70篇
  2020年   88篇
  2019年   102篇
  2018年   44篇
  2017年   77篇
  2016年   66篇
  2015年   56篇
  2014年   104篇
  2013年   92篇
  2012年   95篇
  2011年   84篇
  2010年   75篇
  2009年   86篇
  2008年   58篇
  2007年   100篇
  2006年   88篇
  2005年   27篇
  2004年   21篇
  2003年   18篇
  2002年   15篇
  2001年   16篇
  2000年   7篇
  1999年   16篇
  1998年   13篇
  1997年   4篇
  1996年   5篇
  1995年   2篇
  1994年   2篇
  1993年   5篇
  1992年   4篇
  1991年   4篇
  1990年   5篇
  1989年   6篇
  1988年   3篇
  1987年   15篇
  1986年   8篇
  1985年   1篇
  1984年   7篇
  1983年   1篇
  1982年   1篇
排序方式: 共有1650条查询结果,搜索用时 15 毫秒
31.
《Ceramics International》2019,45(14):17336-17343
Fluoridated hydroxyapatite (FHA) [Ca10(PO4)6Fx(OH)2−x, x = 0–2] is believed to be a promising calcium phosphate (CaP) to replace pure hydroxyapatite (HA) for next-generation implants, owing to its better biocompatibility, higher antibacterial activity, and lower solubility. Notably, the shape and size of the CaP crystals play key roles in their performance and can influence their applications. One-dimensional (1D) FHA nanorods are important CaP materials which have been widely used in regenerative medicine applications such as restorative dentistry. Unfortunately, the traditional synthesis methods for FHA nanorods either employ surfactants or take a relatively long time. In this study, we aimed to propose a facile synthesis route to fabricate FHA nanorods without any surfactants using an electrochemical deposition method for the first time. This study focused on preparing FHA nanorods without the assistance of any surfactant, unlike the traditional synthesis methods, to avoid chemical impurities. FHA nanorods with lengths of 124–2606 nm, diameters of 28–211 nm, and aspect ratios of 4.4–21.8 were synthesized using the electrochemical method, followed by a heat treatment. For the as-synthesized FHA nanorods, the Ca/P ratio was 1.60 and the atomic concentration of F was 2.06 at.%. An ultrastructure examination revealed that each FHA nanorod possessed long-range order, good crystallinity, and a defect-free lattice with a certain crystallographic plane orientation along the whole rod. In short, we propose a novel, surfactant-free, cost-saving, and more efficient route to synthesize FHA nanorods which can be widely applied in multiple biomedical applications, including drug delivery, bone repair, and restorative dentistry.  相似文献   
32.
In the present work, transparent Y2O3 ceramics were prepared via colloidal processing method using ZrO2-coated nano-sized Y2O3 powders. The chemical precipitation method was adopted for the coating of Y2O3 raw powder. The evolution of the coated-ZrO2 layer upon calcination was studied. The rheological behaviors of the slurries of Y2O3 powders coated with different content of ZrO2-additive were investigated. The pHIEP of ZrO2-coated Y2O3 powders shows intermediate values between that of raw Y2O3 and ZrO2 powders. As the ZrO2-coating concentration increased from 0 to 5.0 at%, the magnitude of the negative zeta potential at pH > pHIEP shows a general trend of increment, whereas it decreased at pH < pHIEP. The viscosity decreases pronouncedly with the increase of ZrO2 content from 0.5 at% to 3.0 at%. The suspensions with low viscosity and high stability was achieved for a solid loading of 35.0 vol% using Y2O3 powders coated with 5.0 at% ZrO2. The dispersed suspensions were consolidated by centrifugal casting method and the green bodies shown improved homogeneity. Transparent Y2O3 ceramics were fabricated by vacuum sintering at 1800 ℃ for 5 h. Transmittance at wavelength 800 nm (1.0 mm thick) reached 80.8%, close to the theoretical value of Y2O3.  相似文献   
33.
By utilising soaked millet as a shrinkable pore-forming agent, porous silicon carbide-alumina (SiC-Al2O3) ceramics were prepared via gelcasting. The fabrication of SiC-Al2O3 ceramics based on oxidised and unoxidised coarse-grained SiC was also studied. The water swelling, drying shrinkage, and low-temperature carbonisation of the millet were investigated. We found that the shrinkage of the soaked millet was greater than that of gel body during drying, which left large gaps that prevented shrinkage stresses from destroying the gel body. Low-temperature carbonisation of the millet should be performed slowly at 220–240?°C because its expansion rate increases to 45% at 250?°C, resulting in the cracking of samples. At a constant sintering temperature, the flexural strength of the SiC-Al2O3 ceramics prepared with SiC powders oxidised at 1000?°C was the highest, indicating that oxidised powders can successfully decrease the required sintering temperature and improve the flexural strength of composite ceramics. Based on our optimised process, porous SiC-Al2O3 ceramics were sintered at 1500?°C for 2?h. When their skeletons were fully developed, their pore sizes were in the range of 1.5–2?mm. Their porosity and flexural strength were 60.2–65.1% and 8.3–10.5?MPa, respectively.  相似文献   
34.
代岚 《辽宁化工》2012,41(11):1225-1228
从环境样品的采样技术、样品预处理、样品的分析测试几方面简述有机污染物气相色谱分析技术,并探讨分析测试过程中的质量保证.色谱柱的效能及控制最佳操作条件是保证样品分析结果准确度的关键.  相似文献   
35.
《Ceramics International》2020,46(3):3015-3022
Ho3+ and Yb3+ codoped bismuth titanate (BTO) composite powders with infrared to visible upconversion luminescence (UCL) function were prepared by SGC method. The effects of Ho3+ and Yb3+ doping content on the structure and property were investigated for BTO: xHo, 0.2 Yb (x = 0, 0.02, 0.04, 0.06, 0.08, 0.1) and BTO: 0.02Ho, yYb (y = 0.1, 0.2, 0.3, 0.5, 0.7, 0.9) samples. All the samples include three bismuth titanate phases (Bi4Ti3O12, Bi2Ti2O7, and Bi20TiO32), and the phase proportion can be tuned by changing Ho3+ and Yb3+ doping content. These powders are well crystalized with honeycomb-like microscopic structure, and with good absorption for 233 nm, 310 nm and 975 nm wavelength. The band gap can be tuned from 3.53 eV to 4.03 eV when increasing Yb3+ content from y = 0 to y = 0.9. A strong 530–580 nm green emission band and a relative weak 630–690 nm red one corresponding to Ho3+: 5S25I8 and 5F55I8 transitions appear in the UCL spectra for all the BTO: Ho, Yb samples when pumped at 980 nm. The emission intensities can well be tuned with various Ho3+ and Yb3+ content. The optimal UCL was obtained in BTO: 0.02Ho, 0.5 Yb for all the prepared samples. The energy transfer mechanism is analyzed by building a two-photon energy transfer model, which is proved by the relationship between emission intensities and pumping power measurement. The concentration quenching of Ho3+ is caused by cross relaxation of CR1 and CR2 (Ho: 5F4, 5S2 + 5I85I4 + 5I7) and by CR3 (Ho: 5F4, 5S2 + Yb: 2F7/2 → Ho: 5I6 + Yb: 2F5/2) for Yb3+ quenching. The mean luminescence lifetime (τm) from Ho: 5S2 decreases monotonously with the increase of Ho3+ and Yb3+ content.  相似文献   
36.
《Ceramics International》2020,46(4):4595-4601
The effects of the vacancies on the structural stability, elastic constants, elastic moduli, brittle-to-ductile transition and electronic properties of Tantalum Silicide (TaSi2) are investigated in detail by first-principles calculations. The values of vacancy formation energy confirm that the perfect TaSi2 and TaSi2 with different atomic vacancies can exhibit the structural stability at ground state. It is found that Ta atom vacancies are more stable than Si atom vacancies in TaSi2 with vacancies. The elastic constants and elastic moduli describe the mechanical behavior for TaSi2 and TaSi2 with vacancies. The different atomic vacancies weaken the elastic stiffness for TaSi2. But the values of B/G confirm that the brittle-to-ductile transition occurs with different atomic vacancies for TaSi2. Although these vacancies make the shear and volume deformation resistance of TaSi2 weaker, they obviously improve the brittle behavior of TaSi2. The difference charge density and electronic structures are calculated to discuss and analyze the structural stability and mechanical properties for the perfect TaSi2 and TaSi2 with vacancies.  相似文献   
37.
分子筛由于具有规则的孔道结构、适宜的酸性、良好的热和水热稳定性等特点,广泛应用于吸附、分离、离子交换及催化等领域。传统水热法制备分子筛因需要使用大量溶剂和有机模板剂,存在合成效率低、生产成本高、污染环境等一系列问题。近年来,随着"绿色化学"理念的深入人心,开发绿色、可持续的分子筛制备路线备受关注,逐渐成为该领域的研究热点。本文主要从水热法、离子热法、干胶法以及无溶剂法等几个方面,对国内外分子筛绿色合成的最新研究进展进行综述,并归纳比较上述合成方法的优缺点。最后,提出目前绿色合成分子筛过程中存在的问题,展望其未来发展前景。  相似文献   
38.
《Ceramics International》2017,43(5):4183-4187
Phase evolution, dielectric properties, breakdown strength, and energy-storage performance were studied by varying K2O content in K2O-BaO-Nb2O5-SiO2 glass-ceramics. It was found that dielectric loss with the increase of K2O content increases owing to the un-crystallized K2O into the glass network, while dielectric breakdown strength firstly increases and then decreases due to the competition between two physical mechanisms, i.e., interfacial polarization and bridging-oxygen bond broken by the non-bridging oxygen ions. With the increase of K2O content, energy-storage density firstly increased up to 12.06±0.69 J/cm3 with a high breakdown strength of 1973 kV/cm, and then decreased. Also, the discharged efficiency is obtained as a high value of 92% from P-E hysteresis loops.  相似文献   
39.
The nanocatalysts of VOx deposited on ZrO2 supports with single monoclinic (ZrO2-M), tetragonal (ZrO2-T), and binary monoclinic-tetragonal (ZrO2-MT) phase were synthesized. VOx/ZrO2-MT catalysts exhibit better performance during propane nonoxidative dehydrogenation than VOx/ZrO2-M and VOx/ZrO2-T catalysts. Among VOx/ZrO2-MT catalysts, the conversion and deactivation rate constant of VOx/ZrO2-M31T69 catalyst is 35.2% and 0.22 h−1, respectively. The promoting role of ZrO2-MT is revealed by experiments and theoretical calculations. The MT-mixed phase structure in VOx/ZrO2-MT catalyst improves the structural properties and dispersion of VOx. The tetragonal-monoclinic transformation on the ZrO2-MT surface facilitates VOx reduction and produces additional V3+ active sites. The highly dispersed V3+ sites on the ZrO2-MT surface accelerate C H bond breaking and boost the desorption of propylene, which is the key reason for enhancing activity and stability during the reaction, respectively. Insight into the role of surface phase transformation of ZrO2-MT is expected to obtain high-efficient catalysts further.  相似文献   
40.
《Ceramics International》2023,49(8):12240-12250
A careful approach to the optimization of magnetic and dielectric losses in nanomaterials can improve the electromagnetic wave absorption loss performance for certain microwave absorption applications. In this study we prepared dual core (Fe/TiCN) coated with nitrogen (N) doped carbon shell nanocomposite by arc-discharge method under mix atmospheres of working gases and with varying elemental compositions. Among all nanocomposites, (Fe/TiC0.7N0.3)@N–C dual-core@ N- doped shell nanocomposite exhibits enhanced microwave absorption. Owing to the novel dual-core@ N-doped shell structure and numerous defects induced by doping N in carbon shells, an improved dielectric relaxation in composite is observed and the minimum reflection loss was reached −44.36 dB at 5.3 GHz for 4.8 mm thickness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号