首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3415篇
  免费   240篇
  国内免费   156篇
电工技术   41篇
技术理论   3篇
综合类   68篇
化学工业   846篇
金属工艺   242篇
机械仪表   131篇
建筑科学   39篇
矿业工程   34篇
能源动力   358篇
轻工业   105篇
水利工程   22篇
石油天然气   41篇
武器工业   1篇
无线电   468篇
一般工业技术   580篇
冶金工业   67篇
原子能技术   67篇
自动化技术   698篇
  2024年   2篇
  2023年   119篇
  2022年   44篇
  2021年   34篇
  2020年   107篇
  2019年   120篇
  2018年   38篇
  2017年   175篇
  2016年   160篇
  2015年   136篇
  2014年   282篇
  2013年   269篇
  2012年   319篇
  2011年   236篇
  2010年   220篇
  2009年   253篇
  2008年   165篇
  2007年   290篇
  2006年   199篇
  2005年   108篇
  2004年   44篇
  2003年   46篇
  2002年   69篇
  2001年   68篇
  2000年   32篇
  1999年   27篇
  1998年   23篇
  1997年   8篇
  1996年   13篇
  1995年   19篇
  1994年   9篇
  1993年   6篇
  1992年   6篇
  1991年   10篇
  1990年   10篇
  1989年   7篇
  1988年   20篇
  1987年   59篇
  1986年   50篇
  1985年   9篇
排序方式: 共有3811条查询结果,搜索用时 312 毫秒
1.
The low shear rate rheology of two phase mesophase pitches derived from coal tar pitch has been investigated. Particulate quinoline insolubles (QI) stabilised the mesophase spheres against coalescence. Viscosity measurements over the range 10–106 Pa s were made at appropriate temperature ranges. Increasing shear thinning behaviour was evident with increasing mesophase content. At low mesophase contents the dominant effect on the near Newtonian viscosity was temperature but at higher contents it was the shear rate; temperature dependence declined to near zero. The data indicated that agglomeration could be occurring at intermediate mesophase volume fractions, 0.2–0.3. The Krieger–Dougherty function and its emulsion analogue indicated that in this region the mesophase pitch emulsions actually behaved like ‘hard’ sphere systems and the effective volume fraction was estimated as a function of shear rate illustrating the change in extent of agglomeration. At the higher volume fractions approaching the maximum packing fraction, which could only be measured at higher temperatures, the shear thinning behaviour changed in character and it is considered that this is possibly due to shear induced deformation and breakup of dispersed drops in the shear field.  相似文献   
2.
The electrode ionomer is a key factor that significantly affects the catalyst layer morphology and fuel cell performance. Herein, sulfonated poly(arylene ether sulfone)-based electrode ionomers with polymers of various molecular weights and alcohol/water mixtures were prepared, and those comprising the alcohol/water mixture showed a higher performance than the ones prepared using higher boiling solvents, such as dimethylacetamide; this is owing to the formation of the uniformly dispersed ionomer catalyst layer. The relation between ionomer molecular weight for the same polymer structure and the sulfonation degree was investigated. Because the chain length of polymer varies with molecular weight and chain entanglement degree, its molecular weight affects the electrode morphology. As the ionomer covered the catalyst, the agglomerates formed were of different morphologies according to their molecular weight, which could be deduced indirectly through dynamic light scattering and scanning electron microscopy. Additionally, the fuel cell performance was confirmed in the current-voltage curve.  相似文献   
3.
4.
《Ceramics International》2021,47(22):31268-31276
The relationship between the tensile strength of corroded domestic second-generation (2ed-gen) SiC fibers at various temperatures for 500 h in 46.5LiF-11.5NaF-42.0KF (mol. %) eutectic salt and the typical microstructure was studied. Weibull theory was used to analyze the critical defects that caused the tensile fracture, and the microstructure of fibers before and after corrosion was characterized. It is concluded that the decrease of tensile strength after corrosion at 800 °C is caused by the surface injury of fibers, which led to the shift of critical defects from the internal defects of virgin fibers to surface defects. Moreover, corrosion at higher temperature accelerates the corrosion process and dissolve the surface O-contained layer thoroughly. This shifts the critical defects back to the internal defects and will be helpful for the recovery of tensile strength of corroded fibers at the higher temperature.  相似文献   
5.
The morphology of the photoactive layer critically affects the performance of the bulk heterojunction polymer solar cells (PSCs). To control the morphology, we introduced a hydrophobic fluoropolymer polyvinylidene fluoride (PVDF) as nonvolatile additive into the P3HT:PCBM active layer. The effect of PVDF on the surface and the bulk morphology were investigated by atomic force microscope and transmission electron microscopy, respectively. Through the repulsive interactions between the hydrophilic PCBM and the hydrophobic PVDF, much more uniform phase separation with good P3HT crystallinity is formed within the active layer, resulting enhanced light harvesting and improved photovoltaic performance in conventional devices. The PCE of the conventional device can improve from 2.40% to 3.07% with PVDF additive. The PVDF distribution within the active layer was investigated by secondary ion mass spectroscopy, confirming a bottom distribution of PVDF. Therefore, inverted device structure was designed, and the PCE can improve from 2.81% to 3.45% with PVDF additive. Our findings suggest that PVDF is a promising nonvolatile processing additive for high performance polymer solar cells.  相似文献   
6.
Industrialized white organic light-emitting diodes (OLEDs) currently require host-guest doping, a complicated process necessitating precise control of the guest concentration to get high efficiency and stability. Two doping-free, hybrid white OLEDs with fluorescent blue, and phosphorescent green and red emissive layers (EMLs) are reported in this work. An ultra-thin red phosphorescent EML was situated in a blue-emitting electron transport layer (ETL), while the ultra-thin green phosphorescent EML was placed either in the ETL (Device 1), or the hole transport layer (HTL) (Device 2). Device 2 exhibits higher efficiency and more stable spectrum due to the enhanced utilization of excitons by ultra-thin green EML at the exciton generation zone within the HTL. Values of current efficiency (CE), power efficiency (PE), and CRI obtained for the optimized hybrid white OLEDs fabricated through a doping-free process were of 23.2 cd/A, 20.5 lm/W and 82 at 1000 cd/m2, respectively.  相似文献   
7.
Physically substantiated boundary conditions for problems of heat transfer in infiltrated granular beds based on the two-temperature model which allow for the absence of interphase heat transfer on boundaries are formulated. It is shown that classical Dankwerts conditions would be applicable for gas. The problem of porous cooling at the boundary conditions of the 2nd and 3rd kind on the outer boundary is solved in a new formulation.  相似文献   
8.
《Wear》2007,262(5-6):575-581
PM304 composite has been prepared by high-energy ball milling and powder metallurgy. The composition of the PM304 composite is the same as that of PS304, but the microstructure is quite different. The microstructure of PM304 composite was fine and dense, the size of self-lubricating particles in the composite was very small. The tribological properties of PM304 composites against Inconel X-750 were examined in the temperature range from room temperature to 800 °C. The friction coefficient of PM304 was ranged from 0.32 to 0.41. At room temperature, brittle fracture occurred on the worn surface. With the increase of temperature up to 200 °C, a protective layer consisting of fluorides and Ag existed on the worn surface and led to a low wear rate. The wear resistance of the PM304 was superior to that of the PS304 in the temperature range from room temperature to 650 °C. The improvement in wear resistance of the PM304 was discussed in the terms of its microstructural characteristics.  相似文献   
9.
In this paper we demonstrate a new method for microfabricating PDMS devices that controls vapour diffusion, thereby reducing water loss at elevated temperatures and greatly increasing the reliability of the PCR. In the past, the vapour and liquid diffusion properties of the PDMS material in microfluidic devices have impaired performance. We show that this water loss is primarily due to vapour diffusion from the PDMS biochip and by implanting a polyethylene vapour barrier layer in the PDMS, the overall fluid loss was almost eliminated (reduced by a factor of 3). We have also developed a procedure to ensure irreversible bonding between the PDMS and the implant. With this improved microfabrication method we demonstrate the feasibility and advantages of performing small volume PCR genetic amplification (i.e. with less than 2 μl of PCR sample) within a PDMS–glass hybrid biochip. Diaphragm pumps and pinch-off valves were integrated in the system and these enabled fluid retention during the amplification stage and will facilitate higher levels of on-chip automation.  相似文献   
10.
《Solid-state electronics》2006,50(7-8):1382-1388
We have performed the first principles full-potential linearized augmented plane wave calculations (FP-LAPW) with density functional theory in local density approximations (LDA), in aim to determine and to predict the pressure dependence of structural and optical properties of zinc-blende BeS, BeSe and BeTe compounds. The elastic constant, refractive index and its variation with hydrostatic pressure are well described.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号