首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1041篇
  免费   167篇
  国内免费   106篇
电工技术   15篇
综合类   47篇
化学工业   204篇
金属工艺   21篇
机械仪表   46篇
建筑科学   38篇
矿业工程   8篇
能源动力   56篇
轻工业   177篇
水利工程   10篇
石油天然气   8篇
武器工业   1篇
无线电   125篇
一般工业技术   87篇
冶金工业   17篇
原子能技术   4篇
自动化技术   450篇
  2024年   7篇
  2023年   39篇
  2022年   28篇
  2021年   39篇
  2020年   41篇
  2019年   39篇
  2018年   50篇
  2017年   58篇
  2016年   71篇
  2015年   57篇
  2014年   47篇
  2013年   74篇
  2012年   122篇
  2011年   108篇
  2010年   116篇
  2009年   139篇
  2008年   86篇
  2007年   87篇
  2006年   48篇
  2005年   12篇
  2004年   3篇
  2003年   3篇
  2002年   7篇
  2001年   4篇
  2000年   3篇
  1999年   6篇
  1998年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1987年   7篇
  1986年   7篇
排序方式: 共有1314条查询结果,搜索用时 312 毫秒
141.
α-MnSe crystallites were prepared by solvothermal reaction in ethylenediamine at 190 °C. X-ray diffraction gave the α-MnSe phase of product, X-ray photoelectron spectroscopy indicated the valence state of Mn2+ and Se2−. The flaky morphology was found by the transmission electron microscope images. The optimal synthetic conditions were explored by using other nitrogen-containing solvents, and lowering the reaction temperature.  相似文献   
142.
Both silane and multiwall carbon nanotubes (CNTs) were grafted successfully onto carbon fibers (CFs) to enhance the interfacial strength of CFs reinforced methylphenylsilicone resin (MPSR) composites. The microstructure, interfacial properties, impact toughness and heat resistance of CFs before and after modification were investigated. Experimental results revealed that CNTs were grafted uniformly onto CFs using 3-aminopropyltriethoxysilane (APS) as the bridging agent. The wettability and surface energy of the obtained hybrid fiber (CF-APS-CNT) were increased obviously in comparison with those of the untreated-CF. The CF-APS-CNT composites showed simultaneously remarkable enhancement in interlaminar shear strength (ILSS) and impact toughness. Moreover, the interfacial reinforcing and toughening mechanisms were also discussed. In addition, Thermogravimetric analysis and thermal oxygen aging experiments indicated a remarkable improvement in the thermal stability and heat oxidation resistance of composites by the introduction of APS and CNTs. We believe the facile and effective method may provide a novel interface design strategy for developing multifunctional fibers.  相似文献   
143.
Designing a semiconductor-based heterostructure photocatalyst for achieving the efficient separation of photogenerated electron-hole pairs is highly important for enhancing H2 releasing photocatalysis. Here, a new class of Ni1−xCoxSe2–C/ZnIn2S4 hierarchical nanocages with abundant and compact ZnIn2S4 nanosheets/Ni1−xCoxSe2C nanosheets 2D/2D hetero–interfaces, is designed and synthesized. The constructed heterostructure photocatalyst exposes rich hetero-junctions, supplying the broad and short transfer paths for charge carriers. The close contacts of these two kinds of nanosheets induce a strong interaction between ZnIn2S4 and Ni1−xCoxSe2 C, improving the separation and transfer of photo-generated electron-hole pairs. As a consequence, the distinctive Ni1−xCoxSe2 C/ZnIn2S4 hierarchical nanocages without using additional noble-metal cocatalysts, display remarkable H2-relaesing photocatalytic activity with a rate of 5.10 mmol g−1 h−1 under visible light irradiation, which is 6.2 and 30 times higher than those of fresh ZnIn2S4 nanosheets and bare Ni1−xCoxSe2 C nanocages, respectively. Spectroscopic characterizations and theory calculations reveal that the strong interaction between ZnIn2S4 and Ni1−xCoxSe2 C 2D/2D hetero-interfaces can powerfully promote the separation of photo-generated charge carriers and the electrons transfer from ZnIn2S4 to Ni1−xCoxSe2 C.  相似文献   
144.
The waterline corrosion behaviors of carbon steel partially immersed in a 3.5 wt% NaCl solution were investigated using the wire beam electrode technique, and the effects of corrosion products on the processes of waterline corrosion were analyzed. The results demonstrated that the initial stage and development stage of waterline corrosion were mainly controlled by the concentration and diffusion of dissolved oxygen, respectively, and the deceleration stage of waterline corrosion was mainly affected by corrosion products. The main component of the yellow corrosion products was γ-FeOOH, and γ-FeOOH that exhibited a high reduction reactivity could be involved in the cathodic reaction. The black corrosion products were mainly composed of Fe3O4 with strong thermodynamic stability and the processes of dissolved oxygen diffusion and ion transports were obviously affected due to the continuous accumulation of Fe3O4 on the surface of the electrodes. Polarity reversals were observed on the single electrodes below the waterline, but the reasons for the phenomena were different from each other.  相似文献   
145.
Reasonable structural design is significant to enable the performance in advanced energy storage devices. Herein, a 3D honeycomb-like CoMn2O4 nanoarchitecture (CMO) on nitrogen-doped graphene (NG) coating Ni foam (denoted as Ni/NG/CMO) flexible battery-type electrode was prepared by a facile two-step hydrothermal strategy. The honeycomb-like CoMn2O4 arrays not only provide abundant active sites but can also be closely combined with the Ni foam/NG substrate, which enables high reversible capacity and good cycle stability during the long cycles. Benefiting from the compositional features and 3D honeycomb-like nanoarchitecture, the Ni/NG/CMO composite electrode displays improved electrochemical performance with remarkable specific capacity of 527.0C g−1 at a current density of 1 A g−1, outstanding rate capability (338.6C g−1 even at 20 A g−1). In addition, a flexible binder-free supercapattery device has been assembled with Ni/NG/CMO as positive electrode and 3D Ni/NG as negative electrode. Such a supercapattery delivers a high energy density of 44.1 Wh·kg−1 at 992.6 W kg−1, 20.3 Wh·kg−1 at 12430.0 W kg−1 as well as excellent cycling durability. The 3D honeycomb-like Ni/NG/CMO could be considered as an advanced flexible battery-type material for high capacity and energy density fields.  相似文献   
146.
147.
The catalytic mechanism and activity of transition metal atom doped C2N (M-C2N, M = Fe, Co, Ni, and Cu) for the oxygen reduction reaction (ORR) are investigated in detail by density functional theory method. All the screened M-C2N are thermodynamically stable based on the binding energy calculations. The adsorption energy results indicate that the adsorption strength of O2 and ORR intermediates are decreased in the order of Fe-C2N ˃ Co-C2N ˃ Ni-C2N ˃ Cu-C2N, in which the adsorption energy values on Cu-C2N are most close to those on the Pt(111). Based on the relative energy diagram of ORR, the energetically favorable pathway on Fe-C2N and Co-C2N is direct 4e mechanism, in which the O–O bond is directly dissociated after the second electron transfer. While for Ni-C2N and Cu-C2N, the most favorable pathway is indirect 4e mechanism, in which the H2O2 is formed as the intermediate product. For all studied M-C2N, the Ni-C2N and Cu-C2N hold better catalytic activity, which could attribute to the contribution of metal atom and part of its activated nitrogen atoms.  相似文献   
148.
1‐Butyl‐3‐methylimidazolium hexafluorophosphate (BMIMPF6) as a typical ionic liquid (IL) effectively acted as ligand for the control of iron‐mediated activators generated by electron transfer for atom‐transfer radical polymerization of methyl methacrylate (MMA) in the presence of a limited amount of oxygen, using FeCl3.6H2O as the catalyst and Fe(0) wire as the reducing agent. The polymers obtained with BMIMPF6 had controlled molecular weights and low Mw/Mn values (<1.40). Moreover, a well‐defined final product PMMA without additional processing was easily obtained and the reducing agent (iron wire) could be recycled and reused effectively just by washing three times with solvents.  相似文献   
149.
In this study, the enhancement of catalytic activity of ceria when modified with co-catalysts such as graphitic carbon nitride and silver was established. The material was synthesized using phytogenic combustion method, a green alternative to the traditional preparative routes. The catalyst was characterized using XRD, FTIR, SEM, EDX, XPS and TEM techniques. The synergistic effect of the composite CeO2/g-C3N4/Ag was tested for catalytic reduction of 4-nitrophenol in the presence of sodium borohydride. The reaction was carried out at room temperature without any light source or external stirring. The individual and combined effects of four parameters, viz., concentration of 4-NP, amount of catalyst, amount of NaBH4 and time for the reduction of reduction 4-NP were investigated using Box-Behnken design of response surface methodology (RSM). This statistical model was used to optimize the reaction conditions for maximum reduction of 4-NP. The optimum conditions for the reduction reaction are found to be 0.01 mmol/L 4-NP, 15 mg catalyst, 20 mg NaBH4 and 13.7 min time interval.  相似文献   
150.
Multimedia Tools and Applications - Due to the fast growth of image data on the web, it is necessary to ensure the content security of uploaded images. One of the fundamental problems behind this...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号