首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34062篇
  免费   2845篇
  国内免费   1047篇
电工技术   577篇
综合类   2215篇
化学工业   7308篇
金属工艺   1029篇
机械仪表   505篇
建筑科学   4324篇
矿业工程   2121篇
能源动力   5364篇
轻工业   1690篇
水利工程   1760篇
石油天然气   652篇
武器工业   147篇
无线电   997篇
一般工业技术   4417篇
冶金工业   1059篇
原子能技术   284篇
自动化技术   3505篇
  2024年   133篇
  2023年   1185篇
  2022年   1339篇
  2021年   1441篇
  2020年   1973篇
  2019年   1574篇
  2018年   1326篇
  2017年   1580篇
  2016年   1976篇
  2015年   1927篇
  2014年   2632篇
  2013年   2797篇
  2012年   2306篇
  2011年   2307篇
  2010年   1905篇
  2009年   1897篇
  2008年   1004篇
  2007年   1427篇
  2006年   1270篇
  2005年   807篇
  2004年   464篇
  2003年   481篇
  2002年   555篇
  2001年   507篇
  2000年   283篇
  1999年   397篇
  1998年   238篇
  1997年   110篇
  1996年   229篇
  1995年   146篇
  1994年   107篇
  1993年   77篇
  1992年   76篇
  1991年   83篇
  1990年   85篇
  1989年   83篇
  1988年   187篇
  1987年   463篇
  1986年   433篇
  1985年   110篇
  1983年   2篇
  1982年   5篇
  1980年   3篇
  1979年   4篇
  1978年   2篇
  1976年   4篇
  1959年   3篇
  1951年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
《Ceramics International》2020,46(15):23695-23705
Solid electrolytes are the key component in designing all-solid-state batteries. The Li1.3Al0.3Ti1.7(PO4)3 (LATP) structure and its derivatives obtained by doping various elements at Ti and Al site acts as good solid electrolytes. However, there is still scope for enhancing the ionic conductivity using simple precursors and preparation methods. In this study, the Li superionic conductors Li1.3Al0.3Ti1.7-xZrx(PO4)3 (LATZP) with 0 ≤ x ≤ 0.2 have been successfully prepared by the solid-state reaction route. The structural, morphological, and ionic transport properties were analyzed using several experimental techniques including powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and impedance spectroscopy (IS). The presence of two relaxation processes corresponding to grain and grain boundary was studied using various formalisms. We have observed that grain effects dominate at lower temperatures (<100 °C) while the grain boundary at higher temperatures (> 200 °C) on ionic conductivity. The relaxation mechanisms of grain and grain boundaries were investigated by the Summerfield scaling of AC conductivity. The highest total ionic conductivity of 2.48 × 10-4 S/cm at 150 °C and 5.50 × 10-3 S/cm at 250 °C was obtained for x = 0.1 in Li1.3Al0.3Ti1.6Zr0.1(PO4)3 sintered at 950 °C/6 h in the air. The ionic conductivity value was found to be higher than the ionic conductivity reported for LATP prepared via solid-state reaction mechanism using the same precursors and conditions.  相似文献   
62.
PIV (Particle Image Velocimetry) technique for flow field measurement has achieved popular self-identify through over ten years development, and its application range is becoming wider and wider. PIV post-processing techniques have a great influence on the success of particle-fluid two-phase flow field measurement and thus become a hot and difficult topic. In the present study, a Phase Respective Identification Algorithm (PRIA) is introduced to separate low-density solid particles or bubbles and high-density tracer particles from the PIV image of particle-fluid two-phase flow. PTV (Particle Tracking Velocimetry) technique is employed to calculate the velocity fields of low-density solid particles or bubbles. For the velocity fields of high-density solid particles or bubble phase and continuous phase traced by high-density smaller particles, based on the thought of wavelet transform and multi-resolution analysis and the theory of cross-correlation of image, a delaminated processing algorithm (MCCWM) is presented to conquer the limitation of conventional Fourier transform. The algorithm is firstly testified on synthetic two-phase flows, such as uniform steady flow, shearing flow and rotating flow, and the computational results from the simulated particle images are in reasonable agreement with the given simulated data. The algorithm is then applied to images of actual bubble-liquid two-phase flow and jet flow, and the results also confirmed that the algorithm proposed in the present study has good performance and reliability for post-processing PIV images of particle-fluid two-phase flow.  相似文献   
63.
Drilling is an activity carried out in both professional and domestic environments. In this context, knowing the postural strategies used by users is a challenge. The objective of this study is twofold: 1) to identify the different possible strategies for performing a piercing while characterizing them through quantitative biomechanical parameters related to the task; 2) to propose an evaluation of the ergonomic risks incurred by the users for each of the observed strategies. Thus, fourteen subjects carried out a drilling activity at two different heights and for two types of materials. The position of the gravity center projection in relation to the sustentation polygon as well as the angle between the axis connecting the two feet and the antero-posterior axis (drilling axis) were used to identify the different postural strategies. Three strategies respectively called “Inter-feet”, “Left foot” and “External strategy” and three sub-strategies were identified. Each has been characterized through the duration and the average and maximum forces applied during the drilling phase. Two of them, 0–30° and 30–60° Inter-feet strategies covered about 75% of the trials. Despite the presence of a lower score for the 30–60° and 60–90° External strategies, the ergonomic analysis through the Rapid Upper Limb Assessment revealed that regardless of the strategy used, the postures adopted presented risks of developing musculoskeletal disorders. Thus, the drilling activity must be considered with care.Relevance to industryThe identification and characterization of postural strategies is particularly interesting to better understand the organization of the drilling task and thus optimize productivity while ensuring operator safety.  相似文献   
64.
Recent work has shown that tungsten (W) and other refractory metals with body-centered cubic (bcc) structures exhibit certain novel behavior when their grain size, d, is refined into the ultrafine (UFG, 100 nm < d < 1000 nm) or nanocrystalline (NC, d < 100 nm) regime. For example, it has been shown that bcc refractory metals with such microstructures show decreased strain rate sensitivity besides their elevated strength and vanishing strain hardening response. Consequently, under both quasi-static and high-strain-rate loading, plastic instability in the form of shear banding becomes the dominant mode of plastic deformation. Such behavior is long sought-after in certain applications. However, due to the technology used to refine the grain size (primarily severe plastic deformation), the inability to scale the dimensions of the material may limit wider use and application of UFG/NC bcc refractory metals. In this work, the feasibility was demonstrated of production of large-scale W parts using a diffusion bonding method. The microstructure, preliminary mechanical properties, and issues and challenges associated with the fabrication procedures were examined and discussed. It is envisioned that diffusion bonding may serve as a promising technology for scaled-up fabrication of UFG bcc refractory metals for the targeted application.  相似文献   
65.
The development is presented of a model of the thermodynamic functions of enthalpy, entropy and Gibbs energy for the elements carbon and hydrogen in coke crystallites. It is applicable to varying degrees of graphitization, described by the crystallite length La and the crystallite height Lc. The model parameters are derived from known properties such as bond enthalpies and entropies of formation. Good agreement has been obtained between the predicted thermal dehydrogenation of petroleum cokes and experimental data. The removal of hydrogen from idealized coke crystallites is predicted to occur mostly between 1100 and 1300 K. Agreement has also been found in the comparison of the predicted thermodynamic stability of coke relative to graphite, in a previous experimental study. This stability has been determined as at ≈900 J g−1 at temperatures between 950 and 1250 K and for La = 10 nm. The current predictive capacity of the present model is valid for temperatures up to 2500 K.  相似文献   
66.
The paper proposes a limit analysis approach to define the ultimate load capacity of orthotropic composite laminates under biaxial loading and plane stress conditions. A lower bound to the collapse load multiplier is computed by solving a maximization nonlinear problem, according to the static theorem of limit analysis. To set up the optimization problem a stress field distribution is hypothesized at lamina level, moreover inter-lamina stresses are also considered. The effectiveness and validity of the proposed approach is shown by comparing the obtained numerical predictions both with available experimental data and with other numerical results carried out by means of a different numerical lower bound approach.  相似文献   
67.
A mixed-node MOF catalyst Ag–Cu–BTC was prepared by postsynthetic exchange (PSE) method. It is believed that PSE method can realize isomorphous replacement of Ag ion to framework Cu ion in Cu–BTC successfully. The catalytic performance of Ag–Cu–BTC was investigated via selective oxidation of toluene to benzaldehyde by molecular oxygen in the absence of solvent and initiator. This catalyst exhibits good catalytic performance: on the premise of keeping highly selective catalysis of Cu–BTC for toluene oxidizing to benzaldehyde, the introduction of Ag (Ag content is 2.76 wt.%) can promote toluene conversion from 6.5% to 12.7%.  相似文献   
68.
A novel Zn6Co3 cluster-based heterometallic coordination polymer, [Zn6Co3(PMG)6(H2O)4]·12H2O (1), has been hydrothermally synthesized, in which the PMG3  (N-(phosphonomethyl)glycinate) as a multifunctional ligand was firstly formed via in situ decarboxylation from original ligand N-(phosphonomethyl)imino-diacetic acid during the hydrothermal reaction. The complex was characterized by elemental analysis, FT-IR, powder X-ray diffraction, thermal analysis and single-crystal X-ray diffraction techniques. Its structure features a 2D framework constructed by [Zn6Co3(PMG)6(H2O)4] pinwheel-like heteronuclear clusters, which contains rings with two tropisms. Through extensive O–H⋯O hydrogen bondings, the adjacent 2D layered structure further extends into a 3D supramolecular network. Moreover, the solid-state fluorescence property of this complex has also been investigated at room temperature, which exhibits a good fluorescent emission.  相似文献   
69.
The topic of value creation through the recovery of returned products in closed loop supply chains is scattered across various bodies of literature. We undertake a systematic literature review of 144 articles in relevant green, reverse and closed loop supply chain literature to synchronize existing knowledge on value creation. Value manifestations of four types of value, namely economic, environmental, information and customer value, are identified. Value adding concepts from the forward- and reverse supply chain may leverage the process of value creation. They are classified into six subclasses, namely partnerships and collaboration, product design characteristics, service concepts, IT solutions, supply chain processes and organizational characteristics. We present a conceptual framework on a strategic level. In this way companies can create competitive advantages by closing the loop. The results of the literature analysis suggest avenues for future research on the operational and strategic level.  相似文献   
70.
The use of ozone to increase the cation exchange capacity (CEC) of two chars produced from pyrolysis of Douglas fir (Pseudotsuga menziessii) and a control bituminous coal activated carbon (AC) is reported. Chars were produced from the wood fraction of Douglas fir (DFWC) and the bark (DFBC) at 500 °C using an auger driven reactor with a nitrogen sweep gas under mild vacuum. Five ozone treatment times, ranging from 5 min to 60 min, were investigated. The initial properties of each char were found to differ significantly from the other samples in terms of surface area, proximate composition, and elemental composition. DFWC did not show significant mass loss or temperature variation during ozone treatment; however, after 1 h of oxidation both DFBC and AC samples resulted in 20% and 30% mass loss, respectively, and reactor temperatures in excess of 60 °C. Analysis of the pore size distribution of each treatment shows that ozone treatment did not significantly affect small micropores after 30 min of treatment for any material, but did reduce the apparent surface area of mesopores. Increases in carboxylic groups were identified with ozone treatment and found to correlate strongly with changes in measured CEC. The formation of lactone was found to correlate positively with reactor temperature during oxidation. These results indicate that the properties of chars, including surface area, pore structure, and chemical composition, as well as reactor conditions strongly affect the ozone oxidation of chars.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号