首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5308篇
  免费   154篇
  国内免费   14篇
电工技术   78篇
综合类   17篇
化学工业   1188篇
金属工艺   138篇
机械仪表   229篇
建筑科学   165篇
矿业工程   17篇
能源动力   835篇
轻工业   303篇
水利工程   41篇
石油天然气   87篇
无线电   429篇
一般工业技术   835篇
冶金工业   127篇
原子能技术   38篇
自动化技术   949篇
  2024年   5篇
  2023年   98篇
  2022年   78篇
  2021年   139篇
  2020年   165篇
  2019年   219篇
  2018年   191篇
  2017年   342篇
  2016年   447篇
  2015年   355篇
  2014年   494篇
  2013年   499篇
  2012年   313篇
  2011年   282篇
  2010年   213篇
  2009年   238篇
  2008年   93篇
  2007年   130篇
  2006年   138篇
  2005年   90篇
  2004年   63篇
  2003年   56篇
  2002年   77篇
  2001年   79篇
  2000年   52篇
  1999年   122篇
  1998年   42篇
  1997年   42篇
  1996年   41篇
  1995年   42篇
  1994年   34篇
  1993年   30篇
  1992年   14篇
  1991年   11篇
  1990年   15篇
  1989年   12篇
  1988年   30篇
  1987年   39篇
  1986年   48篇
  1985年   33篇
  1984年   21篇
  1983年   16篇
  1982年   6篇
  1980年   2篇
  1979年   4篇
  1978年   2篇
  1977年   4篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
排序方式: 共有5476条查询结果,搜索用时 31 毫秒
11.
In recent years, significant discoveries related to antimicrobial and adsorption properties of carbon-based nanomaterials have led to new avenues for removal of various biological and organic/inorganic contaminants in drinking water. Furthermore, progress in the synthesis of multifunctional nanocomposites paves the way for their application in advanced water treatment system design. This review article describes and compares the adsorptive and antimicrobial properties of four common classes of carbon nanomaterials: single- and multi-walled carbon nanotubes, graphene, and graphene oxide, as well as some of their most important polymeric and metallic nanocomposites. Barriers for application of these nanomaterials in sustainable water treatment are also addressed.  相似文献   
12.
《Microelectronics Reliability》2015,55(11):2276-2283
Reliability of embedded electronic products is a challenging issue regarding ElectroStatic Discharge (ESD) events into real live applications. This is strongly related to the increased number of embedded systems and to technologies shrinking that result in less robust chips. To ensure the safety of electronic systems, the ESD events have to be taken into account at first design phase. But equipment manufacturers are facing the dilemma that no information is provided by the semiconductor manufacturers. At the same time Integrated Circuit (IC) designers have to take into account the final application environment to build the ESD protection strategy. Depending on the external components (external means around the chip) the on-chip current path could change. Understanding how the system environment impacts the current path within the chip is needed. This paper deals with on-chip oscilloscope developed for in-situ measurement of real ESD event in 65 nm CMOS technology. The measurement bandwidth of the embedded sampler is 100 GHz, and 20 GHz for the probes. Thanks to this technique, impact of the system on the current path of the on-chip ESD strategy will be observed. Some measurement results during an ESD stress on an I/O structure will be presented and analyzed showing that PCB trace and package induce the creation of new current paths.  相似文献   
13.
Temperature programmed reduction (TPR) analysis was applied to investigate the chemical reduction progression behavior of molybdenum oxide (MoO3) catalyst. The composition and morphology of the reduced phases were characterized by X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscopy (FE-SEM). The reduction progression of MoO3 catalyst was attained with different reductant types and concentration (10% H2/N2, 10% and 20% CO/N2 (%, v/v)). Two different modes of reduction process were applied. The first approach of reduction involved non-isothermal mode reduction up to 700 °C, while the second approach of reduction involved the isothermal mode reduction for 60 min at 700 °C. Hydrogen temperature programmed reduction (H2-TPR) results showed the reduction progression of three-stage reduction of MoO3 (Mo6+ → Mo5+ → Mo4+ → Mo0) with Mo5+ and Mo4+. XRD analysis confirmed the formation of Mo4O11 phase as an intermediate phase followed by MoO2 phase. After 60 min of isothermal reduction, peaks of metallic molybdenum (Mo) appeared. Whereas, FESEM analysis showed porous crater-like structure on the surface cracks of MoO2 layer which led to the growth of Mo phase. Meanwhile, the reduction of MoO3 catalyst in 10% carbon monoxide (CO) showed the formation of unstable intermediate phase of Mo9O26 at the early stage of reduction. Furthermore, by increasing 20% CO led to the carburization of MoO2 phase, resulted in the formation of Mo2C rather than the formation of metallic Mo, as confirmed by XPS analysis. Therefore, the presented study shows that hydrogen gave better reducibility due to smaller molecular size, which contributed to high diffusion rate and achieved deeper penetration into the MoO3 catalyst compared to carbon monoxide reductant. Hence, the reduction of MoO3 in carbon monoxide atmosphere promoted the formation of Mo2C which was in agreement with the thermodynamic assessment.  相似文献   
14.
This paper examines what influences trust in mobile social commerce environment. Drawing on trust-based acceptance model (i.e. cognitive and emotional trust) and online review features (i.e. profile photo, linguistic style, and reported experience), we examine how these factors affect trust in mobile social commerce. Hypotheses were tested using survey data. The results of our model showed that there are significant influences of profile photo, reported experience, cognitive, and emotional trust towards trust in ms-commerce. This work contributes to existing literature by examining the roles of previous trust in mobile payments and online reviews on trust in mobile social commerce.  相似文献   
15.
This work presents a complete bond graph modeling of a hybrid photovoltaic-fuel cell-electrolyzer-battery system. These are multi-physics models that will take into account the influence of temperature on the electrochemical parameters. A bond graph modeling of the electrical dynamics of each source will be introduced. The bond graph models were developed to highlight the multi-physics aspect describing the interaction between hydraulic, thermal, electrochemical, thermodynamic, and electrical fields. This will involve using the most generic modeling approach possible for managing the energy flows of the system while taking into account the viability of the system. Another point treated in this work is to propose. In this work, a new strategy for the power flow management of the studied system has been proposed. This strategy aims to improve the overall efficiency of the studied system by optimizing the decisions made when starting and stopping the fuel cell and the electrolyzer. It was verified that the simulation results of the proposed system, when compared to simulation results presented in the literature, that the hydrogen demand is increased by an average of 8%. The developed management algorithm allows reducing the fuel cell degradation by 87% and the electrolyzer degradation by 65%. As for the operating time of the electrolyzer, an increment of 65% was achieved, thus improving the quality of the produced hydrogen. The Fuel Cell's running time has been decreased by 59%. With the ambition to validate the models proposed and the associated commands, the development of this study gave rise to the creation of an experimental platform. Using this high-performance experimental platform, experimental tests were carried out and the results obtained are compared with those obtained by simulation under the same metrological conditions.  相似文献   
16.
The conversion of lignocellulosic biomass (LCB) to microbial oils is attracting a growing amount of attention. However, the growth of the oleaginous yeast Rhodotorula glutinis on LCB hydrolysate (mainly rice straw) only will lead to a low lipid mass fraction, in the range of 10–20%. This study shows that the addition of crude glycerol to the LCB hydrolysate medium can efficiently raise the lipid mass fraction to the range of 30–40%. Crude glycerol is a by-product in the biodiesel production process. The use of renewable LCB hydrolysate and crude glycerol would greatly reduce the substrate cost for microbial oil production using R. glutinis. In addition, the results of experiments show that a low-cost airlift bioreactor is a more suitable fermentation process for the growth of R. glutinis than the use of a conventional agitation tank. When using mixed carbon sources of LCB hydrolysate with 30 kg m−3 of reducing sugars and 30 kg m−3 of crude glycerol, a maximal cell mass of 21.4 kg m−3 and lipid mass fraction of 58.5 ± 6.2 were achieved in an internal loop airlift bioreactor, and this process may have the potential to be applied in scale-up production.  相似文献   
17.
Achieving highly sensitive magnetic sensors by means of Metal-DNA-Metal (MDM) structure is a key issue. DNA, being a genetic information carrier in living cells reveals tunable semiconducting response in the presence of external electric and magnetic fields, which is promising for molecular electronics. The influence of magnetic fields up to 1200 mT on the current–voltage (IV) behavior of Gold-DNA-Gold (GDG) structure having variable gap sizes from 20–50 μm are reported in this work. These structures were fabricated using UV lithography, DC magnetron sputtering and thermal evaporation techniques. DNA strands were extracted from Boesenbergia rotunda plant via standard protocol. The acquired IV characteristics display the semiconducting diode nature of DNA in GDG structures. The potential barrier for all the structures exhibit an increasing trend with the increase of externally imposed magnetic field irrespective of variable gap sizes. Furthermore, the potential barrier in GDG junction at higher magnetic field strengths (>1000 mT) is found to be considerably enhanced. This enhancement in the junction barrier height at elevated magnetic fields is attributed to the reduction of carrier mobility and augmentation of resistance. The achieved admirable features of magnetic sensitivity suggest the viability of using these GDG sandwiches as a prospective magnetic sensor.  相似文献   
18.
This paper deals with the investigation of the effect of hygrothermal conditions on the bending of nanoplates using Levy type solution model employing the state-space concept. The nanoplates are assumed to be subjected to a hygrothermal environment. The two-unknown function plate theory is used to derive the governing differential equations on the basis of Eringen's nonlocal elasticity theory. The governing equations contain the small scale effect as well as hygrothermal and mechanical effects. These equations are converted into a set of first-order linear ordinary differential equations with constant coefficients. Analytical solution of bending response for nanoplates under combinations of simply supported, clamped and free boundary conditions is obtained. Comparison of the results with those being in the open literature is made. The influences played by small scale parameter, temperature rise, the degree of moisture concentration, boundary conditions, plate aspect ratio and side-to-thickness ratio are studied.  相似文献   
19.
20.
The absorption rates of CO2 into aqueous solutions of Diethanolamine (DEA) with varying concentrations from 0.2 to 4M and temperature range from 293 to 323 K were measured by using a laboratory stirred reactor. The CO2 partial pressure was varied in a range that the reaction would occur in pseudo first order regime. Experimental data were analyzed and the kinetic parameters associated with the reaction were determined. The activation energy for the deprotonation of the intermediate zwitterion was estimated at about 11.4 kcal/mol. The contribution of carbamate formation to the overall absorbed CO2 was experimentally evaluated and found to be of the order of 100%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号