首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   20篇
  国内免费   27篇
化学工业   25篇
金属工艺   49篇
矿业工程   3篇
能源动力   5篇
无线电   1篇
一般工业技术   29篇
冶金工业   18篇
原子能技术   37篇
自动化技术   6篇
  2024年   2篇
  2023年   14篇
  2022年   18篇
  2021年   19篇
  2020年   17篇
  2019年   8篇
  2018年   6篇
  2017年   4篇
  2016年   8篇
  2015年   13篇
  2014年   9篇
  2013年   8篇
  2012年   10篇
  2011年   6篇
  2010年   1篇
  2008年   1篇
  2007年   3篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2002年   3篇
  2001年   4篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1992年   1篇
  1988年   2篇
  1987年   3篇
  1959年   1篇
排序方式: 共有173条查询结果,搜索用时 828 毫秒
31.
Crack initiation and propagation in three braided SiC/SiC composite tubes with different braiding angles are investigated by in situ tensile tests with synchrotron micro-computed tomography. Crack networks are precisely detected after an image subtraction procedure based on Digital Volume Correlation. FFT based simulations are performed on the full-resolution 3D images to assess elastic stress/strain fields. Quantitative measurements of the crack geometries are performed using a novel method based on grey levels. The results show that braiding angle has no obvious effect on the location of crack onsets (initiation always occurs at tow interfaces), whereas it significantly affects the paths of crack propagation. This work provides an explicit demonstration of the crack propagation scenarios with respect to the mesoscopic fibre architectures.  相似文献   
32.
In this work, Amosic-3 SiC/SiC composites were irradiated to 10 dpa and 115 dpa with 300 keV Si ions at 300 °C. To evaluate its irradiation behaviour and investigate the underlying mechanism, nanoindentation, AFM, Raman and electron microscopy were utilized. Nanoindentation showed that although micromechanical properties declined after irradiation, hardness and Young’s modulus were maintained better under 115 dpa. AFM manifested differential swelling among PyC interface, fiber and matrix and SEM showed irradiation-induced partial interface debonding, which are both more obvious under 115 dpa. TEM revealed the generation and proliferation of amorphous regions, which is according with the decline and broadening of peaks in Raman spectra. The material was almost completely amorphous after irradiated to 10 dpa while recrystallization occurred under 115 dpa. All results mentioned above contribute to the decline of hardness and Young’s modulus and may explain why the micromechanical degradation was more significant under 10 dpa.  相似文献   
33.
本文利用固溶体合金中的‘团簇加连接原子’模型解析了典型高温近α-Ti合金Ti1100的成分,其团簇成分式为[Al-(Ti13.7Zr0.3)](Al0.69Sn0.18Mo0.03Si0.12)。在此基础上,采用相似元素替代原则设计了微量元素Hf、Ta和Nb添加的系列合金成分,即 [Al-(Ti13.7Zr0.15Hf0.15)](Al0.69Sn0.18Si0.1(Mo/Ta/Nb)0.03)。对该系列合金进行950 ℃/1 h固溶+560 ℃/6 h时效处理,然后进行组织结构、硬度、抗高温氧化及电化学腐蚀性能测试。研究结果表明,Zr0.15Hf0.15合金与参比合金具有相同片层β转变组织,而在此基础上Ta和Nb的添加会使合金中产生大量等轴α组织;但组织的改变对系列合金的显微硬度影响不大,介于330-370 HV。650 ℃氧化100 h后系列合金均具有较强的抗氧化能力,氧化增重小于1.0 mg/cm2,而在800 ℃氧化100 h后,添加Hf、Ta、Nb元素的合金氧化增重明显低于Ti1100合金,氧化层厚度为25~27 μm,且氧化层致密,其中[Al-(Ti13.7Zr0.15Hf0.15)](Al0.69Sn0.18Si0.1Ta0.015Nb0.015)合金具有最优的抗高温氧化性能,800 ℃/100 h后的氧化增重仅为2.6 mg/cm2。此外,该系列合金在在3.5 %NaCl溶液中也具有较好的耐蚀性。  相似文献   
34.
杨攀  张宏智  张毅勇  强瑞  姜强  赵勇  肖亚 《金属热处理》2020,45(12):106-110
采用“热轧+冷轧+退火”工艺对N18锆合金板进行再加工,通过X射线法分析板的表面残余应力,采用EBSD技术分析晶界取向差角分布和大小角度晶界。结果表明,热轧后N18锆合金板的表面残余应力呈现无规律分布状态;冷轧后板的表面残余应力均为压应力,其大小随着冷轧变形量的增加而增加;退火后板的表面残余应力值处于较低水平,当退火制度为500 ℃×2 h时,残余应力处于最低水平;退火后,板的微观结构以小角度晶界为主,且随着退火温度的升高,小角度晶界的密度先增加后趋于稳定。  相似文献   
35.
To better understand the role of dissolved oxygen (DO) in affecting corrosion behavior of zirconium alloys, the Zr–0.85Sn–0.16Nb–0.37Fe–0.18Cr (wt.%) alloy was corroded in super-heated steam at 500 °C and 10.3 MPa under 1×10−6 DO and deaeration conditions. The microstructure of the alloy and oxide films was investigated by SEM, TEM, EDS and EBSD. Results show that the corrosion is aggravated under 1×10−6 DO. Compared with the deaeration condition, the oxide film is looser, and has more micro-cracks and more uneven inner surface under DO condition. For the oxide film forming under deaeration condition, the selected area diffraction (SAED) spots of planes (002)m, and (101)t are strong, while those of the (001)m and are weak. However, for the oxide film forming under DO condition, the SAED spots of planes (111)m, (200)m and (101)t are strong, while those of the (100)m and (110)m are weak. The higher DO content in super-heated steam accelerates the growth of oxide films, thus decreasing the corrosion resistance of zirconium alloys.  相似文献   
36.
37.
The change in fatigue life due to variable cyclic loading was investigated experimentally in order to consider the loading sequence effect in fatigue damage assessment for a component design, and the reason for the change was discussed. Strain-controlled fatigue tests, that is, two-step, surface removal two-step, repeating two-step and periodical overload tests were conducted using Type 316 stainless steel specimen in a room temperature laboratory environment. The high-low loading amplitude sequence for the two-step test, and the repeating two-step and periodical overload tests showed a shorter fatigue life than that predicted by the linear damage accumulation rule. On the other hand, the low–high loading amplitude sequence for the two-step test exhibited a longer fatigue life. The reduction in the fatigue life was mainly attributed to the change in effective strain amplitude. The fatigue life reduction due to the loading sequence effect could be assessed conservatively by determining the allowable number of cycles for effective stress amplitude. Namely, by assuming the crack mouth was fully opened in the assessment, predicted fatigue life became shorter than the experimental results. It was concluded that the margin of 1.3–2.3 should be considered in the design fatigue curve in order to take account of the reduction in fatigue life due to the loading sequence effect.  相似文献   
38.
The plastic behavior of cermets based on a 3 mol% yttria-stabilized tetragonal zirconia matrix that incorporates nanometric nickel inclusions (3YTZP/n-Ni), with 2.5, 5 and 10 vol.% of nickel content, has been studied by constant load tests in compression carried out in argon atmosphere. The microstructure of these composites consists of nanometric nickel inclusions homogeneously dispersed into a fine-grained zirconia matrix (about 200 nm). The microstructural and mechanical results obtained show that the creep behavior is controlled by the zirconia matrix as in 3YTZP-based cermets with micrometric Ni inclusions (3YTZP/μ-Ni); whereas the stress exponent values are similar to those of high-purity monolithic 3YTZPs, anomalous high values of the activation energy have been measured. The ceramic/metal interface plays a crucial role for creep properties; the strong TZP/n-Ni interface matching can be at the origin of these high values of the activation energies for creep.  相似文献   
39.
A hierarchical Cf/C–SiC composite was fabricated via in situ growth of carbon nanotubes (CNTs) on fiber cloths following polymer impregnation and pyrolysis process. The effects of CNTs grown in situ on mechanical properties of the composite, such as flexural strength, fracture toughness, crack propagation behavior and interfacial bonding strength, were evaluated. Fiber push-out test showed that the interfacial bonding strength between fiber and matrix was enhanced by CNTs grown in situ. The propagation of cracks into and in fiber bundles was impeded, which results in decreased crack density and a “pull-out of fiber bundle” failure mode. The flexural strength was increased while the fracture toughness was not improved significantly due to the decreased crack density and few interfacial debonding between fiber and matrix, although the local toughness can be improved by the pull-out of CNTs.  相似文献   
40.
Low mechanical strength, especially at high temperatures, is the key problem that limit the application of FeCrAl alloys as the accident tolerance fuel (ATF) cladding materials. Dispersion strengthening by carbide nanoparticles is an effective way to improve mechanical properties at high temperatures. In this work, an ultrafine grained FeCrAl-0.6 wt.% ZrC alloys with excellent mechanical properties were fabricated successfully by mechanical milling and spark plasma sintering. The effect of milling speed on powder characteristics, microstructure and mechanical properties of FeCrAl alloys were investigated. The particle size of the powders increase significantly after milling at 400 rpm, while it has a lower oxygen content. Increasing the milling speed decreased the resultant grain size and improved relative density. Transmission electron microscope (TEM) demonstrated the nano ZrC particles uniformly distributed in the matrix at higher milling speed, which effectively promotes grain refinement and dispersion strengthening. The results of mechanical properties show that the tensile strength, percentage elongation and hardness of FeCrAl-0.6 wt.% ZrC alloys at room temperature (RT) reached up to 1.05 GPa, 349.86 HV and 12.1%, respectively, after milling at 400 rpm. It is worth noting that the FeCrAl-0.6 wt.% ZrC alloy also exhibited a good high-temperature strength more than 110 MPa at 800 ℃, which is about 55.4% and 24.7% higher than previously reported FeCrAl-0.5 wt.% ZrC and FeCrAl-1.0 wt.% ZrC alloys, but the plasticity is reduced. The results demonstrated that the excellent mechanical properties were not only attributed to the dispersion strengthen by nanosized ZrC, a good interface bonding between Fe matrix and nanosized ZrC, but also the ultra-fine grained structure induced by the milling process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号