首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   485篇
  免费   44篇
  国内免费   5篇
电工技术   8篇
综合类   5篇
化学工业   83篇
金属工艺   12篇
机械仪表   2篇
建筑科学   1篇
矿业工程   1篇
能源动力   26篇
轻工业   5篇
石油天然气   3篇
武器工业   1篇
无线电   190篇
一般工业技术   165篇
冶金工业   3篇
原子能技术   6篇
自动化技术   23篇
  2025年   2篇
  2024年   55篇
  2023年   50篇
  2022年   27篇
  2021年   46篇
  2020年   22篇
  2019年   17篇
  2018年   3篇
  2017年   27篇
  2016年   31篇
  2015年   26篇
  2014年   34篇
  2013年   30篇
  2012年   33篇
  2011年   21篇
  2010年   19篇
  2009年   9篇
  2008年   4篇
  2007年   3篇
  2006年   8篇
  2005年   6篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2001年   6篇
  2000年   1篇
  1999年   5篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1987年   4篇
  1986年   10篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1974年   1篇
  1971年   2篇
  1968年   1篇
  1964年   2篇
  1963年   1篇
  1962年   2篇
排序方式: 共有534条查询结果,搜索用时 15 毫秒
291.
    
Captured by the remarkable environmental/economic value, recycling spent LiFePO4 has attracted numerous attention. However, restricted by diverse failure mechanisms and different particle-sizes/active-sites, recycling strategies still suffer from uneven repairing results and poor accessibility. For promoting their application in commercial systems, the uniform physical-chemical properties are urgent for regenerated samples. Herein, by tailoring oxidation-reduction manners, the homogeneous cathode materials can be prepared, displaying uniform particle size and restored lattice. The capacity of as-optimized samples can be kept ≈141.5 mAh g−1 at 1.0 C, and 137 mAh g−1 with a retention of 92% after 300 cycles at 2.0 C. After Kg-scale experiments, the pouch full-cell (LFP-500 vs recovered graphite) delivers ≈4200 mAh capacity, with considerable cycling stability (retention 96.83%, after 500 loops). Importantly, the detailed mechanism of oxidation/reduction-conditions is investigated, especially their lattice reconstitution and ions- diffusion behaviors. Supported by kinetic analysis and DFT calculations, the fascinating stability of LFP-500 is further proved, mainly derived from the accelerated Li-diffusion behaviors. Compared to traditional recovering manners, oxidation/reduction process displays low cost, energy-consumption, and pollution, accompanied with considerable large-scale application potential. Given this, this work is anticipated to illustrate the in-depth mechanism of lattice-reconstruction, while offering significant strategies for large-scale and homogenized regeneration.  相似文献   
292.
    
Aqueous zinc-ion batteries (AZIBs) with the merits of superior security, natural abundance, and inexpensive Zn hold great promises for next-generation energy storage. Nevertheless, the instabilities of the Zn anodes arising from the unsatisfactory dendrite growth and parasitic reactions have seriously restricted their practical application. Herein, an interfacial protection engineering approach is proposed for stabilizing Zn anode via in-situ constructing 3D hybrid fiber networks within high elastic polyether-type polyurethane (TPEU) and super-ionic conductor NaTi2(PO4)3 (NTP). This 3D NTP@TPEU fiber framework demonstrates synergistic effects of enhancing Zn2+ immigration kinetics and improving the desolvation process. Subsequently, such a superior protected interface induces a highly reversible Zn (002) deposition/stripping with a dendrites-free feature. Moreover, the NTP@TPEU/Zn displays an ultralong lifespan of over 2000 cycles with an average Coulombic efficiency (CE) of 99.5% in the half-cell configuration. To highlight, a full battery matched with Ca-doped VO2 on carbon cloth cathode acquires an enhanced CE as high as 99.8% and delivers good cycling stability with a capacity retention of 81.6% at 2 A g−1 over 3000 cycles. These excellent outcomes provide a distinctive perspective of designing a highly stable zinc anode for the practical application of AZIBs.  相似文献   
293.
    
Real-time monitoring wound status and providing timely therapies with smart wound dressing is a promising way to treat wound infections and accelerate the healing process. Herein, to establish a closed-loop monitoring and treatment system, a fully integrated, battery-free, and wireless smart wound dressing for wound infection detection and on-demand drug delivery is developed using flexible electronics. The smart wound dressing integrated with the near field communication module can realize wireless power harvest and data transmission, on-site signal processing, and drug delivery control, through the miniaturized circuit and smartphone. The temperature, pH, and uric acid of the wound is detected simultaneously by the developed sensors to assess wound conditions. Meanwhile, the drug delivery electrode in the dressing is used to provide on-demand infection treatment by the electrically controlled antibiotics delivery. Through in vitro antibacterial experiments and in situ animal studies, it is shown that the dressing can effectively inhibit bacterial growth and accelerate wound healing, which fully validates its effectiveness in the wound treatment. Utilizing the advantages of near-field communication and flexible electronics, the battery-free and integrated design of sensing and treatment provides a promising solution for the development of a closed-loop biomedical system integrating monitoring, diagnosis, and therapy.  相似文献   
294.
    
Although 2H molybdenum disulfide (MoS2) layers are highly desirable for hydrogen evolution reaction (HER) owing to their high chemical stabilities and low cost, the inert basal plane and semiconducting nature severely hinder their practical applications. Here, the catalytic activities of 2H phase molybdenum-based compounds are unlocked via topological conversion reaction from Mo2GeC MAX phase to accordion-like molybdenum phosphosulphide. During the conversion reaction, phosphorus atoms can be implanted into the sandwich-like S-Mo-S planes and gradually substitute sulfur atoms, which are beneficial to optimize the electronic configuration and facilitate to absorb water molecules, unlocking the inert basal planes of 2H phase molybdenum-based compounds. The accordion-like molybdenum phosphosulphide exhibits high hydrogen production rates up to 288 mmol g−1 h−1 cm−2 at a high loading of 3 mg cm−2 and ultralong durability up to 35,000 cycles, satisfying the practical application for HER.  相似文献   
295.
    
As the feature sizes of electronic devices continue to shrink, new technologies—in particular spintronics and derived interfacial architectures—become increasingly pivotal. In this context, two-dimensional van der Waals materials and their interfaces are particularly attractive, relying on their ultimate atomic thicknesses and exceptional spin-related properties. This review provides a critical evaluation on the state-of-the-art of van der Waals interfaces and projected technological applications in spintronics, highlights major challenges and a viable solution—an all-in-situ growth and characterization strategy, and finally identifies several emerging spin-based technologies that might significantly benefit from the versatile van der Waals interfaces enabled by the strategy.  相似文献   
296.
    
The monitoring and classification of different gases, such as H2 and NH3 using a low-cost resistive semiconductor sensor is preferred in practical applications in hydrogen energy, breath analysis, air pollution monitoring, industrial control, and etc. Herein, porous bi-layer Pt/SnO2 thin film sensors were fabricated to enhance H2 and NH3 sensing performance for effective monitoring and classification. Different Pt film thicknesses of 2, 5, 10, and 20 nm were deposited on 150 nm SnO2 film-based sensors by sputtering method to optimize the response to H2 and NH3 gases. Gas sensing results showed that the fabricated Pt/SnO2 films significantly improved the sensor response to NH3 and H2 compared to pure SnO2 thin film. The sensors based on 5 and 10 nm Pt catalyst layers presented the highest responses to H2 and NH3, respectively. The optimal working temperature for NH3 was in the range from 250 °C to 350 °C, and that for H2 gas is less than 200 °C. The response of Pt/SnO2 sensors to CH4, CO, H2S, and liquefied petroleum gas was much lower than that to NH3 and H2 supporting the high selectivity. On the basis of sensing results at different working temperatures or Pt thicknesses, we applied a radar plot and linear discriminant analysis methods to distinguish NH3 and H2. The results showed that H2 and NH3 could be classified without any confusion with different Pt layer thicknesses at a working temperature of 250 °C.  相似文献   
297.
    
In a modern electronics system, charge-coupled devices and data storage devices are the two most indispensable components. Although there has been rapid and independent progress in their development during the last three decades, a cofunctionality of both sensing and memory at single-unit level is yet premature for flexible electronics. For wearable electronics that work in ultralow power conditions and involve strains, conventional sensing-and-memory systems suffer from low sensitivity and are not able to directly transform sensed information into sufficient memory. Here, a new transformative device is demonstrated, which is called “sen-memory”, that exhibits the dual functionality of sensing and memory in a monolithic integrated circuit. The active channel of the device is formed by a carbon nanotube thin film and the floating gate is formed by a controllably oxidized aluminum nanoparticle array for electrical- and optical-programming. The device exhibits a high on–off current ratio of ≈106, a long-term retention of ≈108 s, and durable flexibility at a bending strain of 0.4%. It is shown that the device senses a photogenerated pattern in seconds at zero bias and memorizes an image for a couple of years.  相似文献   
298.
    
We here demonstrate the use of solution processed NiOx thin films as the hole transport layer (HTL) in a thiophene–quinoxaline copolymer:fullerene solar cell. The NiOx films, which are prepared by UV-ozone treating a nickel formate precursor, outperform the solar cells prepared in this study that use PEDOT:PSS as HTL. The power conversion efficiency improves from 5.3% to 6.1% when replacing PEDOT:PSS with NiOx. Unlike most conventional ways of fabricating solution processed NiOx HTLs, our method does not require high temperature (>300 °C). In fact, we were able to produce high performing NiOx HTLs without the use of any thermal annealing. X-ray photoelectron spectroscopy revealed that a mixture of oxides and hydroxides is formed as a result of the UV-ozone treatment, which differs in composition from those formed by high temperature annealing; UV-ozone treatment produces NiOOH, while only the high temperature annealing produces any significant amount of NiO. Contact potential difference (CPD) measurements reveal an increased work function for all UV-ozone treated NiOx films, consistent with the presence of NiOOH at the surface. The high work function of the UV-ozone treated NiOx films leads to an improved energy level matching between the donor and the HTL, resulting in higher fill factor and hole injection current.  相似文献   
299.
    
Currently, certified lab scale organic photovoltaic (OPV) cells reach efficiencies of more than 12% and life times of 10 years. For commercialization, it is necessary to understand which performance can be reached in fully printed large scale products. Our investigations show that large area, semi-transparent organic photovoltaic modules based on industrially available materials can achieve power conversion efficiencies of more than 4.8% on rigid substrates and 4.3% on flexible ones. The modules processed with a combination of large area coating and laser patterning with an active area of 68.76 cm2 for flexible modules and a total area of 197.4 cm2 for glass modules offer exceptionally high geometric fill factors of more than 94% and a transparency of more than 10%. The processing recipe and the layout of the modules are based on indications of optical and electrical simulations which allow to produce devices with only negligible losses in comparison to small single cell devices. Losses due to imperfect coating or patterning are identified by thermal imaging.  相似文献   
300.
    
As the everyday use of petroleum-based products has raised environmental concerns, there is an urgent need to replace them with green materials. In this work, an eco-friendly, highly conductive, flexible silver nanowire/poly (lactic acid) film has been fabricated through a simple casting method by embedding the silver nanowires (AgNWs) below the surface of the poly lactic acid (PLA) matrix. The fabricated film has a high optical transparency of 89.5% with a sheet resistance of 64.8 Ω/□ and a figure of merit (FoM) of 4.92 × 10−3 Ω−1 which is comparable to that of indium tin oxide (ITO). These films demonstrate excellent flexibility, great adhesion, smooth surface with root mean square (RMS) roughness of 11.7 nm and high mechanical properties with tensile strength and Young's modulus of 39.8 (MPa) and 1.6 (GPa). The results obtained from different testing methods show that the AgNW/PLA nanocomposites are potential candidates in flexible electronics and optoelectronics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号