首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   369篇
  免费   16篇
  国内免费   53篇
电工技术   3篇
综合类   5篇
化学工业   78篇
金属工艺   12篇
建筑科学   1篇
矿业工程   1篇
能源动力   23篇
轻工业   3篇
石油天然气   3篇
武器工业   1篇
无线电   144篇
一般工业技术   134篇
冶金工业   3篇
原子能技术   4篇
自动化技术   23篇
  2024年   2篇
  2023年   39篇
  2022年   22篇
  2021年   37篇
  2020年   21篇
  2019年   17篇
  2018年   3篇
  2017年   27篇
  2016年   26篇
  2015年   26篇
  2014年   34篇
  2013年   30篇
  2012年   33篇
  2011年   21篇
  2010年   19篇
  2009年   9篇
  2008年   3篇
  2007年   3篇
  2006年   8篇
  2005年   6篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2001年   6篇
  2000年   1篇
  1999年   5篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1987年   4篇
  1986年   10篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
排序方式: 共有438条查询结果,搜索用时 15 毫秒
341.
Lanthanum doped BaTiO3 powders were synthesized by the hydro-phase method at atmospheric pressure, which controls the uniformity and particle size of the ceramic powders. The effects of La3+ ions concentration on the microstructure and dielectric properties of BaTiO3 ceramics were studied. The results suggested that both the average grain size and dielectric constants (εr and εmax) of the ceramics decreased as the concentration of La3+ increased. The ceramic met the X8R specifications: La3+ ions concentration of 3 mol%, a permittivity of 2322, low dielectric loss of less than 0.6% at room temperature, and average grain size of about 260 nm.  相似文献   
342.
We have uncovered some unusual thermal interface properties of a three-dimensional, flexible and interconnected graphene foam (GF). The thermal interfacial resistance of GF at Si–Al interface is as low as 0.04 cm2K W−1, which is one order of magnitude lower than conventional thermal grease and thermal paste-based thermal interfacial material (TIM). The thermal contact resistance was found to dominate the overall interfacial resistance of GF-based TIM, in as much as the bulk thermal conductivity of GF is rather high. The contact pressure-dependent thermal interfacial resistance of GF exhibits an asymptotic behavior, which converges into a plateau value at an ultralow contact pressure (∼0.1 MPa). Significantly, the GF-based TIM has shown a superior performance to vertically aligned carbon nanotubes currently held as the gold standard (at least ∼75% improvement in thermal interfacial resistance at Si–Al interface), thus providing a strong candidate for the next generation of high-performance carbon-based TIM.  相似文献   
343.
Journal of Materials Science: Materials in Electronics - The monobasic Sb thin films with different thicknesses were prepared by radio frequency magnetron sputtering. The evolutions of Sb thin film...  相似文献   
344.
Wan  Lei  Li  Xuan  Zhu  Ning  Zhang  Rui-ying  Mei  Ting 《Microsystem Technologies》2016,22(8):2133-2139
Microsystem Technologies - In order to directly characterize sidewall roughnesses of shallow microstructures with etching depth less than 10 μm using a conventional atomic force...  相似文献   
345.
346.
Significant progress has been made in recent years in research on wet spinning and hydrothermal synthesis of graphene fibers. In this paper, we report the relationship between the mechanical performance of graphene oxide (GO) fibers and their processing parameters in wet spinning. With super-aligned carbon nanotube (CNT) film wrapping, the specific strength and electrical conductivity of reduced GO (rGO) fibers were simultaneously enhanced by 22% and 49%, respectively. Thicker CNT film wrapping of the rGO fiber induces a core–sheath structure; the resulting interfacial debonding and slippage under fiber axial loading were examined. The findings of this study provide guidelines for optimization of high-performance graphene/CNT hybrid fibers.  相似文献   
347.
Since perovskite precursor solution is typically prepared from high boiling point solvents, understanding the effect of high boiling point solvent treatment of the PEDOT:PSS layer on the performance of perovskite solar cells is important for device processing optimization. In this paper, influence of the surface treatment of the PEDOT:PSS layer with high boiling point solvent, including N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and ethylene glycol (EG), on the device performance of the perovskite solar cells was investigated. Increased conductivity was measured for the PEDOT:PSS film after solvent treatments, which was ascribed to the partial removal of PSS component from the PEDOT:PSS layer, as evidenced by the UV–vis absorption spectroscopy and XPS spectroscopy. In comparison with the reference cell, poorer device performance was obtained for the perovskite solar cells directly deposited on the solvent washed PEDOT:PSS film, which was ascribed to the increased pin hole density of the perovskite films. However, insertion of a thin PSSNa layer between the PEDOT:PSS layer and the perovskite layer greatly improved device performance, demonstrating that PSS-rich surface is favorite for the crystal growth of the perovskite film. Increased external quantum efficiency over 600–750 nm was measured for the cells based on solvent treated PEDOT:PSS layer, leading to a short circuit current and the consequent performance enhancement.  相似文献   
348.
349.
The empty states of graphene and graphene adsorbed on nickel (1 1 1) are studied using a plane-wave pseudo-potential method based on local density functional theory. The analysis is used to assign spectroscopic features observed in secondary electron emission experiments either to the graphene sheet or to the nickel substrate. The calculations provide insights into the key role of the graphene–substrate interaction, through the hybridization between carbon and nickel states, and indicate secondary electron emission as an efficient probe for interfaces made of two dimensional crystals.  相似文献   
350.
以钴(Co)、氧化镁(MgO)作催化剂和催化剂载体,采用化学气相沉积(CVD)法催化裂解甲烷气体制备单壁碳纳米管(SWNTs)。利用拉曼光谱、紫外-红外-近红外吸收光谱、透射电子显微镜、X射线衍射、扫描电子显微镜等手段对样品进行表征。结果表明,在Co/MgO催化体系下,通过改变升温速率可以调节产物中粗细管径(0.8~1.4nm)SWNTs的相对含量;同时还证实了在不同的升温速率下所得到MgO基体的晶体结构是相同的。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号